The Root of the Problem: The Sequel

Algebra Level 2

Solve for x x :

x = 1 + 2 1 + 3 1 + 4 1 + 5 1 + x = \sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+5\sqrt{1+\cdots}}}}}

Note: If you think you know this problem so well, try this .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

L e t , f ( n ) = n ( n + 2 ) f ( n ) = n ( n + 2 ) 2 = n 1 + ( ( n + 2 ) 2 1 ) = n 1 + ( n + 1 ) ( n + 3 ) = n 1 + f ( n + 1 ) = n 1 + ( n + 1 ) 1 + f ( n + 2 ) f ( n ) = n ( n + 2 ) = n 1 + ( n + 1 ) 1 + ( n + 2 ) 1 + ( n + 3 ) 1 + ( n + 4 ) 1 + putting n = 1 we get x , x = f ( 1 ) = 1 ( 1 + 2 ) = 1 1 + ( 1 + 1 ) 1 + ( 1 + 2 ) 1 + ( 1 + 3 ) 1 + ( 1 + 4 ) 1 + 3 = 1 1 + 2 1 + 3 1 + 4 1 + 5 1 + \begin{aligned}Let,f(n)=n(n+2)\\ f(n)&=n\sqrt{(n+2)^2}\\ &=n\sqrt{1+\left((n+2)^2-1\right)}\\ &=n\sqrt{1+(n+1)\cdot(n+3)}\\ &=n\sqrt{1+f(n+1)}\\ &=n\sqrt{1+(n+1)\sqrt{1+f(n+2)}}\\ f(n)=n(n+2)&=n\sqrt{1+(n+1)\sqrt{1+(n+2)\sqrt{1+(n+3)\sqrt{1+(n+4)\sqrt{1+\cdots}}}}}\\ \text{putting } n=1 \text{ we get }x,\\ x=f(1)=1(1+2)&=1\sqrt{1+(1+1)\sqrt{1+(1+2)\sqrt{1+(1+3)\sqrt{1+(1+4)\sqrt{1+\cdots}}}}}\\ 3&=1\sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+5\sqrt{1+\cdots}}}}}\end{aligned}

good approach

Ekaveera Kumar Sharma - 3 years, 6 months ago

Good thinking

Bhavana Bunsha - 3 years, 5 months ago

Ramanujan's formula (eqn. 26) on nested radical:

u + n + a = a u + ( n + a ) 2 + u a ( u + n ) + ( n + a ) 2 + ( u + n ) a ( u + 2 n ) + ( n + a ) 2 + ( u + 2 n ) u+n+a = \sqrt{au+(n+a)^2 + u\sqrt{a(u+n)+(n+a)^2 + (u+n)\sqrt{a(u+2n)+(n+a)^2 + (u+2n)\sqrt \cdots}}}

Putting u = 2 u=2 , n = 1 n =1 and a = 0 a=0 , we have:

2 + 1 + 0 = 1 + 2 1 + 3 1 + 4 1 + 5 1 + x = 3 \begin{aligned} 2+1+0 & = \sqrt{1 + 2\sqrt{1 + 3\sqrt{1 + 4 \sqrt{ 1+5\sqrt{1+ \cdots}}}}} \\ \implies x & = \boxed{3} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...