The Secret 7

What is the last digit of 7 100 + 5 7^{100} + 5 ?

1 6 4 9

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Matteo Monzali
Jun 6, 2017

If you write the last digit of the first powers of seven:

7 0 = 1 7^0 = 1 ; last digit: 1 ; 0 mod 4 = 0

7 1 = 7 7^1 = 7 ; last digit: 7 ; 1 mod 4 = 1

7 2 = 49 7^2 = 49 ; last digit: 9 ; 2 mod 4 = 2

7 3 = 343 7^3 = 343 ; last digit: 3 ; 3 mod 4 = 3

7 4 = 2401 7^4 = 2401 ; last digit: 1 ; 4 mod 4 = 0

7 5 = 16807 7^5 = 16807 ; last digit: 7 ; 5 mod 4 = 1

....

There is a period of 4, so you only need 100 mod 4 = 0, so the last digit is 1.

Adding 5, the last digit of 7 100 + 5 7^{100}+5 is 6

Pham Khanh
Apr 20, 2016

7 100 + 5 7^{100}+5 = 7 0 × 7 100 + 5 =7^{0} \times 7^{100}+5 = 7 0 × ( 7 4 ) 25 + 5 =7^{0} \times (7^{4})^{25}+5 = 7 0 × 240 1 25 + 5 =7^{0} \times 2401^{25}+5 7 0 × 1 25 + 5 \equiv 7^{0} \times 1^{25}+5 1 × 1 + 5 \equiv 1 \times 1+5 1 + 5 \equiv 1+5 6 ( m o d 10 ) \equiv 6 \pmod{10} Hence, the last digit is 6 \large \color{#624F41}{\boxed{\color{#D61F06}{6}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...