The sequence

Level pending

Look at the following sequence. The sequence occurs infinitely for any integer.

, 0 , 0 , 4 , 12 , 24 , 40 , 60 , \ldots , 0,0,4,12,24,40, 60, \ldots

Find the value of the difference between the n th n^\text{th} term and the ( n + 1 ) th -(n+1)^\text{th} term of this sequence.

Clarifications :

  • The value of the sequence is "0" only for 2 terms, 1 -1 and 0 0
  • Suppose for example take the sequence 2 , 1 , 0 , 1 , 2 , 3 , 4 , 5 -2, -1, 0, 1, 2, 3, 4, 5 , and let 2 n d 2^{nd} term be 4 4 , then ( 2 + 1 ) t h -(2+1)^{th} term is 2 -2 , then your answer would be 4 ( 2 ) = 6 4-(-2) = 6
  • The terms of the sequence is in ascending order


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Viki Zeta
Jul 12, 2016

If you look carefully at the sequence, you’ll get a general formula : n t h = 2 n ( n + 1 ) ... 1 So, n t h term would be n t h = 2 ( n ) ( n + 1 ) = 2 n ( 1 n ) = 2 n ( n 1 ) Therefore, ( n + 1 ) t h term would be : ( n + 1 ) t h = 2 ( n + 1 ) ( ( n + 1 ) 1 ) = 2 ( n + 1 ) ( n ) = 2 n ( n + 1 ) ... 2 Now, on subtracting 1 and 2 you get : n t h ( ( n + 1 ) t h ) = 2 n ( n + 1 ) ( 2 n ( n + 1 ) ) n t h ( ( n + 1 ) t h ) = 0 Therefore, the answer is 0 \hrule Now to find the sequence. Let the general formula be f(x). Given that f(x) have 2 zeros, therefore f(x) is a quadratic equation. Roots are 0, -1 x = 0 ÷ a , x = 1 f ( x ) = ( a x ) ( x + 1 ) Therefore, on substituting values for "x" and matching it with sequence : f(1) - f(0) = 4 1 a ( 1 + 1 ) 0 a ( 0 + 1 ) = 4 a ( 2 ) + 0 = 4 2 a = 4 a = 2 Therefore the formula is f ( x ) = 2 n ( n + 1 ) \text{If you look carefully at the sequence, you'll get a general formula : } \\ n^{th} = 2n(n+1) \text{ ... } \fbox{1}\\ \text{So, }-n^{th}\text{ term would be} \\ -n^{th} = 2(-n)(-n + 1) = -2n ( 1-n) = 2n(n-1) \\ \text{Therefore, }-(n+1)^{th} \text{ term would be :}\\ -(n+1)^{th} = 2(n+1)((n+1)-1) = 2(n+1)(n) = 2n(n+1) \text{ ... }\fbox{2} \\ \text{Now, on subtracting } \fbox{1} \text{ and } \fbox{2} \text{ you get :}\\ n^{th} - (-(n+1)^{th}) = 2n(n+1) - (2n(n+1)) \\ \implies n^{th} - (-(n+1)^{th}) = 0 \\ \text{Therefore, the answer is }\fbox{0} \\ \hrule \\ \text{Now to find the sequence.} \\ \text{Let the general formula be f(x). Given that f(x) have 2 zeros, therefore f(x) is a quadratic equation.} \\ \text{Roots are 0, -1} \\ \implies x = 0\div a, x = -1 \\ \implies f(x) = (ax)(x+1) \\ \text{Therefore, on substituting values for "x" and matching it with sequence : } \\ \text{f(1) - f(0) = 4} \\ \implies 1a(1+1) - 0a(0+1) = 4\\\implies a(2) + 0 = 4\\\implies 2a = 4\\\implies \fbox{a = 2} \\ \text{Therefore the formula is } f(x) = 2n(n+1)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...