The Series of Madness

Algebra Level 5

A = n = 1 50 ( x n + 1 x n ) B = n = 1 10 ( x 5 n 2 + 1 x 5 n 2 ) \large { \begin{aligned} A&=& \sum_{n=1}^{50} \left(x^n+\frac1{x^n} \right) \\ B&=&\sum_{n=1}^{10} \left(x^{5n-2}+\frac1{x^{5n-2}} \right) \end{aligned}}

Given that x + 1 x = 4 x + \frac1x =4 , with A A and B B as described above, find the value of A B \dfrac AB .

This is one of my original Madness problems .


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Raj Rajput
Aug 12, 2015

Did the same thing.

subh mandal - 4 years, 9 months ago

Did the same method

I Gede Arya Raditya Parameswara - 4 years, 3 months ago
Kartik Sharma
Aug 8, 2015

This is a non-conventional method.

x + 1 x = 4 \displaystyle x + \frac{1}{x} = 4

Let, x = e z \displaystyle x = {e}^{z}

Then,

cosh ( z ) = 2 \displaystyle \cosh(z) = 2

And,

A = n = 1 50 2 cosh ( n z ) \displaystyle A = \sum_{n=1}^{50}{2\cosh(nz)}

B = n = 1 10 2 cosh ( ( 5 n 2 ) z ) \displaystyle B = \sum_{n=1}^{10}{2\cosh((5n-2)z)}

A B = n = 1 50 2 cosh ( n z ) n = 1 10 2 cosh ( ( 5 n 2 ) z ) \displaystyle \frac{A}{B} = \frac{\displaystyle\sum_{n=1}^{50}{2\cosh(nz)}}{\displaystyle\sum_{n=1}^{10}{2\cosh((5n-2)z)}}

Using the "Angles in AP formula" for cos ( a ) \cos(a) in terms of cosh ( a ) \cosh(a) [We can do that since they are in fraction]

A B = sinh ( 50 z / 2 ) cosh ( 51 z / 2 ) sinh ( z / 2 ) sinh ( 50 z / 2 ) cosh ( 51 z / 2 ) sinh ( 5 z / 2 ) = sinh ( 5 z / 2 ) sinh ( z / 2 ) \displaystyle \frac{A}{B} = \frac{\displaystyle \frac{\sinh(50z/2)\cosh(51z/2)}{\sinh(z/2)}}{\displaystyle \frac{\sinh(50z/2)\cosh(51z/2)}{\sinh(5z/2)}} = \frac{\sinh(5z/2)}{\sinh(z/2)}

A B = 2 cosh ( z ) + 2 cosh ( 2 z ) + 1 \displaystyle \frac{A}{B} = 2\cosh(z) + 2\cosh(2z) + 1

Substituting cosh ( z ) = 2 \cosh(z) = 2 ,

A B = 19 \displaystyle \frac{A}{B} = \boxed{19}

Great English! +1

Pi Han Goh - 5 years, 10 months ago

Similar solution, but I used cos \cos instead of cosh \cosh .

Alan Enrique Ontiveros Salazar - 5 years, 10 months ago

Log in to reply

I also first used cos \text{cos} but then I thought it's just not good to say c o s ( x ) = 2 cos(x) = 2 .

Kartik Sharma - 5 years, 10 months ago

Nice way to use hyperbolic functions!!

Sanjeet Raria - 5 years, 10 months ago

I tried icosx

subh mandal - 4 years, 9 months ago

What is angles in A.P. formula ?

Vishal Yadav - 4 years, 2 months ago

Let a n = x n + 1 x n a_n=x^n+\dfrac{1}{x^n} .

From the hypothesis, we get x 2 + 1 = 4 x x^2+1=4x or x 2 = 4 x 1 x^2=4x-1 .

Similarly, we have 1 x 2 = 4 x 1 \dfrac{1}{x^2}=\dfrac{4}{x}-1 .

For integer n 3 n\ge 3 , we have:

x n = x n 2 . x 2 = x n 2 ( 4 x 1 ) = 4 x n 1 x n 2 x^n=x^{n-2}. x^2=x^{n-2}(4x-1)=4x^{n-1}-x^{n-2}

1 x n = 1 x n 2 . 1 x 2 = 1 x n 2 ( 4 x 1 ) = 4 x n 1 1 x n 2 \dfrac{1}{x^n}=\dfrac{1}{x^{n-2}}.\dfrac{1}{x^2}=\dfrac{1}{x^{n-2}}\left(\dfrac{4}{x}-1\right)=\dfrac{4}{x^{n-1}}-\dfrac{1}{x^{n-2}}

Thus, a n = 4 a n 1 a n 2 a_n=4a_{n-1}-a_{n-2} for all integer n 3 n\ge3 .

For each integer n 3 n\ge 3 , we have:

a n + 2 + a n + 1 + a n + a n 1 + a n 2 \quad a_{n+2}+a_{n+1}+a_n+a_{n-1}+a_{n-2}

= 4 a n + 1 a n + a n + 1 + a n + a n 1 + 4 a n 1 a n =4a_{n+1}-a_n+a_{n+1}+a_n+a_{n-1}+4a_{n-1}-a_n

= 5 ( a n + 1 + a n 1 ) a n =5(a_{n+1}+a_{n-1})-a_n

= 20 a n a n = 19 a n =20a_n-a_n=19a_n .

Thus,

A = n = 1 10 ( a 5 n + a 5 n 1 + a 5 n 2 + a 5 n 3 + a 5 n 4 ) = n = 1 10 19 a 5 n 2 = 19 B \displaystyle A=\sum_{n=1}^{10} \left(a_{5n}+a_{5n-1}+a_{5n-2}+a_{5n-3}+a_{5n-4}\right)=\sum_{n=1}^{10} 19a_{5n-2}=19B

Or A B = 19 \dfrac{A}{B}=\boxed{19} .

Good work.

Sanjeet Raria - 5 years, 10 months ago

That's complete brilliance .. It is such an amazing solution.!!!

Ankit Kumar Jain - 4 years, 3 months ago

You've thought lot about it.BTW I used GP

Aakash Khandelwal - 5 years, 10 months ago
Gian Sanjaya
Aug 29, 2015

My favorite solution would be this one. Notice that, for all a , m , n Z a, m, n \in Z :

( a m + 1 a m ) ( a n + 1 a n ) = a m + n + a m n + 1 a m n + 1 a m + n (a^m+\frac{1}{a^m})(a^n+\frac{1}{a^n})=a^{m+n}+a^{m-n}+\frac{1}{a^{m-n}}+\frac{1}{a^{m+n}}

With this, then:

( a m + 1 a m ) i = n n a i = m n m + n ( a i + 1 a i ) (a^m+\frac{1}{a^m})\displaystyle \sum_{i=-n}^n a^i=\displaystyle \sum_{m-n}^{m+n}(a^i+\frac{1}{a^i})

By expanding B B , multiplying it by i = 2 2 x i \displaystyle \sum_{i=-2}^2 x^i , and shrinking the value back to sum notation form, we get:

( x 2 + x + 1 + 1 x + 1 x 2 ) B = n = 1 10 ( k = 4 0 ( x 5 n + k + 1 x 5 n + k ) ) = n = 1 50 ( x n + 1 x n ) = A (x^2+x+1+\frac{1}{x}+\frac{1}{x^2})B = \displaystyle \sum_{n=1}^{10}(\displaystyle \sum_{k=-4}^0 (x^{5n+k}+\frac{1}{x^{5n+k}}))=\displaystyle \sum_{n=1}^{50}(x^n+\frac{1}{x^n})=A

Thus, A B = x 2 + x + 1 + 1 x + 1 x 2 = ( x + 1 x ) 2 + ( x + 1 x ) 1 = 16 + 4 1 = 19 \frac{A}{B}=x^2+x+1+\frac{1}{x}+\frac{1}{x^2}=(x+\frac{1}{x})^2+(x+\frac{1}{x})-1=16+4-1=19 .

That I can say is near about what I did

Shreyash Rai - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...