A positive integer will be called awesome if it has the following properties:
It ranges between and , not inclusive. Therefore an awesome integer must contain digits.
The ten thousands digit is less than the thousands digit.
The thousands digit is less than the hundreds digit.
The hundreds digit is less than the tens digit.
The tens digit is less than the ones digit.
Robert writes ALL possible awesome integers on a piece of paper. He then arranges them in ascending order, putting them in a sequence in which has the smallest value, and has the biggest value. Find
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
T h e a w e s o m e i n t e g e r s p q r s t s t a r t s f r o m a 1 = 1 2 3 4 5 a n d e n d a t a n = 5 6 7 8 9 . C o n s t r a i n s : − 1 ≤ p ≤ 5 . p + 1 ≤ q ≤ 6 . q + 1 ≤ r ≤ 7 . r + 1 ≤ s ≤ 8 . s + 1 ≤ t ≤ 9 . A W E S O M E S F O R A L L P O S S I B L E S T A R T O F r T I L L r E N D S A T r = 7 . r 3 s 4 5 6 7 8 t 5 , 6 , 7 , 8 , 9 6 , 7 , 8 , 9 7 , 8 , 9 8 , 9 9 a w e s o m e s 1 2 3 4 5 , 1 2 3 4 6 , 1 2 3 4 7 , 1 2 3 4 8 , 1 2 3 4 9 1 2 3 5 6 , 1 2 3 5 7 , 1 2 3 5 8 , 1 2 3 5 9 1 2 3 6 7 , 1 2 3 6 8 , 1 2 3 6 9 1 2 3 7 8 , 1 2 3 7 9 1 2 3 8 9 a 1 = 1 2 3 4 5 t o a 1 5 = 1 2 3 8 9 H o w m a n y 5 4 3 2 1 1 5 r 4 s 5 6 7 8 t 6 , 7 , 8 , 9 7 , 8 , 9 8 , 9 9 a w e s o m e s 1 2 4 5 6 , 1 2 4 5 7 , 1 2 4 5 8 , 1 2 4 5 9 1 2 4 6 7 , 1 2 4 6 8 , 1 2 4 6 9 1 2 4 7 8 , 1 2 4 7 9 1 2 4 8 9 a 1 6 = 1 2 4 6 7 t o a 2 5 = 1 2 4 8 9 H o w m a n y 4 3 2 1 1 0 r 5 s 6 7 8 t 7 , 8 , 9 8 , 9 9 a w e s o m e s 1 2 5 6 7 , 1 2 5 6 8 , 1 2 5 6 9 1 2 5 7 8 , 1 2 5 7 9 1 2 5 8 9 a 2 6 = 1 2 5 6 7 t o a 3 1 = 1 2 5 8 9 H o w m a n y 3 2 1 6 r 6 s 7 8 t 8 , 9 9 a w e s o m e s 1 2 6 7 8 , 1 2 6 7 9 1 2 6 8 9 a 3 2 = 1 2 6 7 8 t o a 3 4 = 1 2 6 8 9 H o w m a n y 2 1 3 r 7 s 8 t 9 a w e s o m e s 1 2 7 8 9 a 3 5 = 1 2 7 8 9 H o w m a n y 1 1 A l l r e n d i n r = 7 . T A B L E f o r p = 1 . W h e n p q i s 1 2 1 3 1 4 1 5 1 6 S t a r t o f r 3 4 5 6 7 a w e s o m e s f r o m a 1 = 1 2 3 4 5 a 3 6 = 1 3 4 5 6 a 5 6 = 1 4 5 6 7 a 6 6 = 1 5 6 7 8 a 7 0 = 1 6 7 8 9 t o a 3 5 = 1 2 7 8 9 a 5 5 = 1 3 7 8 9 a 6 5 = 1 4 7 8 9 a 6 9 = 1 5 7 8 9 T o t a l a w e s o m e s . 1 5 + 1 0 + 6 + 3 + 1 = 3 5 1 0 + 6 + 3 + 1 = 2 0 6 + 3 + 1 = 1 0 3 + 1 = 4 1 = 1 . S o f o r p = 1 w e h a v e 3 5 + 2 0 + 1 0 + 4 + 1 = 7 0 a w e s o m e s T A B L E f o r p = 2 . W h e n p q i s o v e r l i n e 2 3 2 4 2 5 2 6 S t a r t o f r 4 5 6 7 a w e s o m e s f r o m a 7 1 = 2 3 4 5 6 a 9 1 = 2 4 5 6 7 a 1 0 1 = 2 5 6 7 8 a 1 0 5 = 2 6 7 8 9 t o a 9 0 = 2 3 7 8 9 a 1 0 0 = 2 4 7 8 9 a 1 0 4 = 2 5 7 8 9 T o t a l a w e s o m e s . 1 0 + 6 + 3 + 1 = 2 0 6 + 3 + 1 = 1 0 3 + 1 = 4 1 = 1 . S o f o r p = 2 w e h a v e 2 0 + 1 0 + 4 + 1 = 3 5 a w e s o m e s . T A B L E f o r p = 3 . W h e n p q i s 3 4 3 5 3 6 S t a r t o f r 5 6 7 a w e s o m e s f r o m a 1 0 6 = 3 4 5 6 7 a 1 1 6 = 3 5 6 7 8 a 1 2 0 = 3 6 7 8 9 t o a 1 1 5 = 3 4 7 8 9 a 1 1 9 = 3 5 7 8 9 T o t a l a w e s o m e s . 6 + 3 + 1 = 1 0 3 + 1 = 4 1 = 1 . S o f o r p = 3 w e h a v e 1 0 + 4 + 1 = 1 5 a w e s o m e s . T A B L E f o r p = 4 . W h e n p q i s 4 5 4 6 S t a r t o f r 6 7 a w e s o m e s f r o m a 1 2 1 = 4 5 6 7 8 a 1 2 5 = 4 6 7 8 9 t o a 1 2 4 = 4 5 7 8 9 T o t a l a w e s o m e s . 3 + 1 = 4 1 = 1 . S o f o r p = 4 w e h a v e 4 + 1 = 5 a w e s o m e s . T A B L E f o r p = 5 . W h e n p q i s 5 6 S t a r t o f r 7 a w e s o m e a n = a 1 2 6 = 5 6 7 8 9 T o t a l a w e s o m e s . 1 = 1 . S o f o r p = 5 w e h a v e 1 a w e s o m e . S o n = 1 2 6 a n d n 1 0 0 = 2 4 7 8 9 . n + n 1 0 0 = 1 2 6 + 2 4 7 8 9 = 2 4 9 1 5 .