The Shopkeeper's Profit

Algebra Level 2

A shopkeeper sold a product for $ 480 \$480 on a loss of 20 % 20\% . For what cost should he sell the same to get a 20 % 20\% profit ?

750 510 720 600 620

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Viki Zeta
Sep 9, 2016

Let the real price of the product be ‘x’. Since he sold at a loss, real price will be greater than selling price, so: x 20 100 x = 480 100 x 20 100 = 480 100 x 20 x = 48000 80 x = 48000 x = 600 Therefore if he needs to sell at a 20% profit, Profitable Selling Price = x + 20 100 x = 600 + 20 100 600 = 600 + 120 = 720 \text{Let the real price of the product be `x'.} \\ \text{Since he sold at a loss, real price will be greater than selling price, so:} \\ x - \dfrac{20}{100}x = 480 \\ \dfrac{100x - 20}{100} = 480 \\ 100x - 20x = 48000 \\ 80x = 48000 \\ \fbox{ x = 600 } \\ \text{Therefore if he needs to sell at a 20\% profit, } \\ \text{Profitable Selling Price = } x + \dfrac{20}{100}x = 600 + \dfrac{20}{100}600 = 600 + 120 \\ = \fbox{ 720 }

Mohammad Khaza
Sep 14, 2017

as he sold the product for 480 480 $ on 20 20 % loss,

so, the original cost was= 100 × 480 80 \frac{100 \times 480}{80} = 600 600 $

so now, 20 20 % discount on original cost will be= 600 × 20 100 \frac{600 \times 20}{100} = 120 120 $

so,on 20 20 % discount, he will sell it on= 600 + 120 = 720 600+120=720 $

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...