The simplest one

Algebra Level 1

3 6 × 4 3 × 2 6 8 9 × 2 3 3 = ? \Large \color{#3D99F6}{\sqrt[3]{\dfrac{3^6 \times 4^3 \times 2^6}{8^9 \times 2^3}}=\ ? }

Choose the correct number to be filled in the blank above.


Join the Brilliant Classes and enjoy the excellence. Also checkout Foundation Assignment #2 for JEE.
None of the given. 3 / 8 3/8 9 / 64 9/64 9 / 8 9/8 3 / 64 3/64

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Nihar Mahajan
May 26, 2015

3 6 × 4 3 × 2 6 8 9 × 2 3 3 = 3 6 3 × 4 3 3 × 2 6 3 8 9 3 × 2 3 3 = 3 2 × 4 × 2 2 8 3 × 2 = 3 2 × 2 2 × 2 2 2 9 × 2 = 3 2 × 2 4 2 10 = 3 2 2 6 = 9 64 \Large{{\sqrt[3]{\dfrac{3^6\times 4^3 \times 2^6}{8^9 \times 2^3}} \\ =\dfrac{3^{\frac{6}{3}} \times 4^{\frac{3}{3}}\times 2^{\frac{6}{3}}}{8^{\frac{9}{3}} \times 2^{\frac{3}{3}}}} \\ =\dfrac{3^2 \times 4 \times 2^2}{8^3 \times 2} \\ =\dfrac{3^2 \times 2^2 \times 2^2}{2^9 \times 2} \\ = \dfrac{3^2\times 2^4}{2^{10}} \\ =\dfrac{3^2}{2^6} \\ =\boxed{\dfrac{9}{64}}}

Moderator note:

You do not need to group the terms together first before taking its cube root. Do you see why?

You forgot cheers.

Rama Devi - 6 years ago

Log in to reply

OOps , Cheers! xD

Nihar Mahajan - 6 years ago

In response to Challenge Master: I have edited my solution accordingly.Thanks!

Nihar Mahajan - 6 years ago
Suprem S.Nalkund
May 25, 2015

I enjoy pen & paper a whole lot more than "formatted tables" or "Easy Math Editors" etc.

=)

Fabio Bittar - 6 years ago

Well done! ¨ \huge\ddot \smile

Sravanth C. - 6 years ago

Log in to reply

Thanks ,even you did well

Suprem s.nalkund - 6 years ago

Log in to reply

Welcome! ¨ \huge\ddot\smile

Sravanth C. - 6 years ago

You have to use pen for this 😂

pradeep sharma - 6 years ago
Sravanth C.
May 25, 2015

3 6 × 4 3 × 2 6 8 9 × 2 3 3 = ? \Large \color{#3D99F6}{\sqrt[3]{\dfrac{3^6 \times 4^3 \times 2^6}{8^9 \times 2^3}}=\ ? }

We can also write this as 3 6 × 2 6 × 2 6 2 30 3 = 1 2 6 3 2 30 3 = 144 1024 = 9 64 \Large \color{#EC7300}{\sqrt[3]{\dfrac{3^6 \times 2^{6}\times 2^6}{2^{30}}}} \\ =\Large \color{#20A900}{\dfrac{12^{\frac{6}{3}}}{2^{\frac{30}{3}}}}\\ =\color{#3D99F6}{ \dfrac{144}{1024}}\\ = \color{#D61F06}{\boxed{\dfrac{9}{64}}}

Arulx Z
May 25, 2015

= 3 6 4 3 2 6 8 9 2 3 3 = 3 6 2 6 2 6 2 27 2 3 3 = 3 6 2 12 2 30 3 = 3 6 2 18 3 = ( 3 2 ) 3 ( 2 6 ) 3 3 = 3 2 2 6 = 9 64 =\sqrt [ 3 ]{ \frac { { 3 }^{ 6 }\cdot { 4 }^{ 3 }\cdot { 2 }^{ 6 } }{ { 8 }^{ 9 }\cdot { 2 }^{ 3 } } } \\ =\sqrt [ 3 ]{ \frac { { 3 }^{ 6 }\cdot { 2 }^{ 6 }\cdot { 2 }^{ 6 } }{ { 2 }^{ 27 }\cdot { 2 }^{ 3 } } } \\ =\sqrt [ 3 ]{ \frac { { 3 }^{ 6 }\cdot { 2 }^{ 12 } }{ { 2 }^{ 30 } } } \\ =\sqrt [ 3 ]{ \frac { { 3 }^{ 6 } }{ { 2 }^{ 18 } } } \\ =\sqrt [ 3 ]{ \frac { { ({ 3 }^{ 2 }) }^{ 3 } }{ { ({ 2 }^{ 6 }) }^{ 3 } } } \\ =\frac { { 3 }^{ 2 } }{ { 2 }^{ 6 } } \\ =\frac { 9 }{ 64 }

Lew Sterling Jr
Jun 9, 2015

Pradeep Sharma
Jun 1, 2015

Lol so easy

😂😂😂

Ayush Baranwal
May 30, 2015

without any help I solve the problem......

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...