One Minus A Colorful Sum

Algebra Level 2

Simplify the colorful expression below. 1 ( 1 2 + 1 4 + 1 8 + 1 16 + 1 32 + 1 64 + 1 128 + 1 256 ) {1-\left(\dfrac{1}{\color{#3D99F6}{2}}+\dfrac{1}{\color{#D61F06}{4}}+\dfrac{1}{\color{#20A900}{8}}+\dfrac{1}{\color{#624F41}{16}}+\dfrac{1}{\color{magenta}{32}}+\dfrac{1}{\color{#EC7300}{64}}+\dfrac{1}{\color{#69047E}{128}}+\dfrac{1}{\color{#BBBBBB}{256}}\right)}

0 1 256 \frac{1}{256} 1 2 1 16 \frac{1}{16} 1 128 \frac{1}{128}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Nowras Otmen
Oct 20, 2015

x = 1 n = 1 8 ( 2 1 ) n x=1-\displaystyle\sum_{n=1}^8 \left(2^{-1}\right)^{n}

n = 1 8 ( 2 1 ) n = 2 1 ( 2 8 1 ) 2 1 \displaystyle\sum_{n=1}^8 \left(2^{-1} \right)^{n} = \frac {2^{-1}(2^{-8}-1)}{-2^{-1}}
= ( 2 8 1 ) =-\left(2^{-8}-1\right) = 1 256 + 1 =-\frac {1}{256}+1

Making the substitution:

x = 1 ( 1 256 + 1 ) x=1-\left(-\dfrac {1}{256}+1\right) x = 1 + 1 256 1 x=1+\dfrac {1}{256}-1 Therefore: x = 1 256 x=\dfrac{1}{256}

1 ( 1 2 + 1 4 + 1 8 + 1 16 + 1 32 + 1 64 + 1 128 + 1 256 ) = 1 2 7 + 2 6 + 2 5 + 2 4 + 2 3 + 2 2 + 1 256 = 1 2 8 1 256 = 1 255 256 = 256 255 256 = 1 256 1-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\right) \\=1-\frac{2^7+2^6+2^5+2^4+2^3+2^2+1}{256}\\=1-\frac{2^8-1}{256}\\=1-\frac{255}{256}=\frac{256-255}{256}=\boxed{\dfrac{1}{256}}

Achille 'Gilles'
Oct 25, 2015

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...