Are you sure about the sine integral?

Calculus Level 3

I 1 = π 4 0 2 ( sin ( π x 4 ) ) A x B d x I 2 = 4 B π B 0 1 ( arcsin ( x ) ) B x A 1 x 2 d x \large \begin{aligned} I_1&=\frac{\pi}{4}\int_0^2 \frac{{\left(\sin\left(\frac{\pi x}{4}\right)\right)}^A}{x^B}\ dx\\ I_2&=\frac{4^B}{{\pi}^B}\int_0^1 \frac{{\left(\arcsin\left(x\right)\right)}^B}{x^A\sqrt{1-x^2}}\ dx \end{aligned}

Given that I 1 I_1 and I 2 I_2 are defined in the respective domains as above, where A A and B B are real numbers, find the minimum possible value of I 1 + I 2 I_1+I_2 .

Clarifications

  • Si ( x ) \text{Si}(x) refers to the sine integral, and Si ( 0 ) = 0 \text{Si}(0)=0 .
4 4 2 2 2 π 2\pi 0 0 π 4 \frac{\pi}{4} π 2 \frac{\pi}{2} π \pi 2 Si ( 2 ) 2\text{Si}\left(2\right)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nick Turtle
May 13, 2018

First, note simply that, except for rather specific values of A A and B B , there is no way to express these integrals with elementary functions, but that doesn't mean one cannot solve the problem.

Initially, looking at I 2 I_2 , one might try substituting something like x = sin ( u ) x=\sin\left(u\right) (which will cancel out the 1 x 2 \sqrt{1-x^2} in the denominator), but ultimately it should be apparent that substituting x = sin ( π u 4 ) x=\sin\left(\frac{\pi u}{4}\right) in I 2 I_2 works best:

I 2 = 4 B π B 0 1 ( arcsin ( x ) ) B x A 1 x 2 d x = π 4 0 2 u B ( sin ( π u 4 ) ) A 1 sin 2 ( π u 4 ) cos ( π u 4 ) d u = π 4 0 2 u B ( sin ( π u 4 ) ) A d u \begin{aligned} I_2&=\frac{4^B}{{\pi}^B}\int_0^1 \frac{{\left(\arcsin\left(x\right)\right)}^B}{x^A\sqrt{1-x^2}}\ dx\\ &=\frac{\pi}{4}\int_0^2 \frac{u^B}{{\left(\sin\left(\frac{\pi u}{4}\right)\right)}^A\sqrt{1-\sin^2\left(\frac{\pi u}{4}\right)}}\cos\left(\frac{\pi u}{4}\right)\ du\\ &=\frac{\pi}{4}\int_0^2 \frac{u^B}{{\left(\sin\left(\frac{\pi u}{4}\right)\right)}^A}\ du\\ \end{aligned}

Now, note the similarities between I 1 I_1 and I 2 I_2 . Then, if f ( x ) = x B ( sin ( π x 4 ) ) A \large f\left(x\right)=\frac{x^B}{{\left(\sin\left(\frac{\pi x}{4}\right)\right)}^A} ,

I 1 + I 2 = π 4 0 2 ( sin ( π x 4 ) ) A x B d x + π 4 0 2 x B ( sin ( π x 4 ) ) A d x = π 4 0 2 ( f ( x ) + 1 f ( x ) ) d x π 4 0 2 2 d x = π \begin{aligned} I_1+I_2&=\frac{\pi}{4}\int_0^2 \frac{{\left(\sin\left(\frac{\pi x}{4}\right)\right)}^A}{x^B}\ dx+\frac{\pi}{4}\int_0^2 \frac{x^B}{{\left(\sin\left(\frac{\pi x}{4}\right)\right)}^A}\ dx\\ &=\frac{\pi}{4}\int_0^2 \left(f\left(x\right)+\frac{1}{f\left(x\right)}\right)\ dx\\ &\ge \frac{\pi}{4}\int_0^2 2\ dx\\ &= \pi \end{aligned}

using the AM-GM inequality and the fact that f ( x ) > 0 f\left(x\right)>0 for 0 < x < 2 0< x< 2 . Now, equality occurs when and only when f ( x ) = 1 f ( x ) f\left(x\right)=\frac{1}{f\left(x\right)} for all x x . This is true when A = B = 0 A=B=0 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...