The sines speak otherwise

Geometry Level 4

Given that sin x sin y = 3 \dfrac{\sin x}{\sin y} = 3 and cos x cos y = 1 2 \dfrac{\cos x}{\cos y} = \dfrac{1}{2} .

The value of sin 2 x sin 2 y cos 2 x cos 2 y \dfrac{\sin2x}{\sin2y}- \dfrac{\cos2x}{\cos2y} can be expressed as p q \dfrac{p}{q} for coprime positive integers p p and q q . Find p + q p+q .


This is a modified AIME problem.


The answer is 183.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

{ sin x sin y = 3 sin x = 3 sin y sin 2 x = 9 sin 2 y cos x cos y = 1 2 cos x = cos y 2 cos 2 x = cos 2 y 4 \begin{cases} \dfrac {\sin x}{\sin y} = 3 & \implies \sin x = 3 \sin y & \implies \sin^2 x = 9 \sin^2 y \\ \dfrac {\cos x}{\cos y} = \dfrac 12 & \implies \cos x = \dfrac {\cos y}2 & \implies \cos^2 x = \dfrac {\cos^2 y}4 \end{cases}

9 sin 2 y + cos 2 y 4 = sin 2 x + cos 2 x 9 sin 2 y + cos 2 y 4 = 1 36 sin 2 y + cos 2 y = 4 35 sin 2 y + 1 = 4 sin 2 y = 3 35 \begin{aligned} \implies 9 \sin^2 y + \frac {\cos^2 y}4 & = \sin^2 x + \cos^2 x \\ 9 \sin^2 y + \frac {\cos^2 y}4 & = 1 \\ 36 \sin^2 y + \cos^2 y & = 4 \\ 35 \sin^2 y + 1 & = 4 \\ \sin^2 y & = \frac 3{35} \end{aligned}

Since cos 2 y = 1 2 sin 2 y = 1 2 × 3 35 = 29 35 \cos 2y = 1 - 2\sin^2 y = 1 - 2 \times \dfrac 3{35} = \dfrac {29}{35} .

Note that sin 2 x = 9 sin 2 y = 27 35 \sin^2 x = 9 \sin^2 y = \dfrac {27}{35} cos 2 x = 1 2 × 27 35 = 19 35 \implies \cos 2x = 1 - 2 \times \dfrac {27}{35} = - \dfrac {19}{35}

Therefore, we have:

sin 2 x sin 2 y cos 2 x cos 2 y = 2 sin x cos x 2 sin y cos y 19 35 29 35 = 3 × 1 2 + 19 29 = 125 58 \begin{aligned} \frac {\sin 2x}{\sin 2y} - \frac {\cos 2x}{\cos 2y} & = \frac {2\sin x \cos x}{2 \sin y \cos y} - \frac {-\frac {19}{35}}{\frac {29}{35}} \\ & = 3 \times \frac 12 + \frac {19}{29} \\ & = \frac {125}{58} \end{aligned}

p + q = 125 + 58 = 183 \implies p + q = 125 + 58 = \boxed{183}

Except for minor short cuts, i did the same way. So +1)

Niranjan Khanderia - 4 years, 3 months ago
Rab Gani
Apr 20, 2014

Write sin x = 3k, sin y=k, cosx = (1-9k^2)^0.5 = l, and cos y = (1-k^2)^0.5=2l, where l, and m are constants.Solve the simultaneous eqs. l^2 = 1-9k^2, and 4l^2 = 1-k^2, then we find k^2 = 3/35.

(sin 2x/sin 2y) - (cos 2x/cos 2y) = (2sin x.cos x)/(2sin y . cos y) - (2 (cos x)^2 - 1) /(2(cos y)^2 - 1) = 3/2 + 19/29 = 125/58=p/q, so p+q = 183.

Brillianťé

Adarsh Kumar - 7 years, 1 month ago
Med Sen
Apr 21, 2014

you gonna use cos(2x)= 1 − 2 sin^2(x) and cos(2y)= 1 − 2 sin^2(y) and sin(y)= 1/3 sin (x) cos(y)= 2 cos(x) sin(y)^2 + cos(y)^2 -> sin(x) sin(x)^2 + cos(x)^2 -> sin(y) 3/2 + 19/29 = 125/58= p/q then p+q = 183 Done!

Kvsnlr Kvsnlr
Dec 21, 2014

we know that sin^2(x)+cos^2(x)=1 let it be eqn 1 and from problem sin(x)=sin(y)×3 squaring on both sides we get sin^2(x)=9sin^2(y) and similatly other equn in prob is cos (x)=cos(y)÷2 and squqring on bth sides we get cos^2(x)=cos^2(y)÷4 substituting sin^2(x) and cos^2(x) values in eqn1 we get eqn in tetms of sin^2(y) and cos^2(y) let this be eqn 2 and we we know that sin^2(y)+cos^2(y)=1 let it be eqn 3 solving eqn 2 and 3 we get sin^2(y) and cos^2(y) values and from these we can get sin^2(x) and cos^2(x) values substituting we know that sin2x=2sinx×siny and cos2x=2cos^2(x)-1 substituting all values on req exp we will get its value

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...