The Sky is the Limit.

Calculus Level 3

Evaluate the following expression:

lim n ( ( n + 1 ) ( n + 2 ) ( n + 3 ) ( 3 n ) n 2 n ) 1 n \large \lim_{n\to\infty} \left(\frac{(n+1)(n+2)(n+3)\cdots(3n)}{n^{2n}}\right)^\frac1n

18 e 4 \frac{18}{e^4} 3 log 3 2 4 \frac{3\log 3 - 2}{4} 9 e 2 \frac{9}{e^2} 3 log 3 2 2 \frac{3\log 3 -2}{2} 27 e 2 \frac{27}{e^2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The expression can be simplified to:- lim n ( ( 3 n ) ! n ! ) 1 n 1 n 2 \displaystyle \lim_{n\to\infty} \left(\frac{(3n)!}{n!}\right)^{\frac{1}{n}}\cdot \frac{1}{n^{2}}

Using Stirlings Approximation:- We can approximate n ! ( n e ) n 2 n π \displaystyle n! \approx \left(\frac{n}{e}\right)^{n}\cdot \sqrt{2n\pi} .

Using this we can simplify the limit as.

lim n 27 n 3 e 3 n e 1 n 2 = 27 e 2 \displaystyle \lim_{n\to\infty}\frac{\frac{27n^{3}}{e^{3}}}{\frac{n}{e}}\cdot \frac{1}{n^2}=\frac{27}{e^{2}} .

Joseph Newton
Jun 12, 2018

Since there are 2 n 2n terms in the numerator, we can split the n 2 n n^{2n} between them:

L = lim n ( n + 1 n × n + 2 n × n + 3 n × × 3 n n ) 1 n \begin{aligned}L&=\lim_{n\to\infty}\left(\frac{n+1}{n}\times\frac{n+2}{n}\times\frac{n+3}{n}\times\dots\times\frac{3n}{n}\right)^{\large\frac{1}{n}}\end{aligned}

Now, let us consider ln L \ln L :

ln L = lim n ln ( n + 1 n × n + 2 n × n + 3 n × × 3 n n ) 1 n = lim n 1 n ln ( n + 1 n × n + 2 n × n + 3 n × × 3 n n ) = lim n 1 n [ ln ( n + 1 n ) + ln ( n + 2 n ) + ln ( n + 3 n ) + + ln ( 3 n n ) ] = lim n 1 n k = 1 2 n ln ( n + k n ) = lim n 1 n k = 1 2 n ln ( 1 + k n ) \begin{aligned}\ln L&=\lim_{n\to\infty}\ln\left(\frac{n+1}{n}\times\frac{n+2}{n}\times\frac{n+3}{n}\times\dots\times\frac{3n}{n}\right)^{\large\frac{1}{n}}\\ &=\lim_{n\to\infty}\frac{1}{n}\ln\left(\frac{n+1}{n}\times\frac{n+2}{n}\times\frac{n+3}{n}\times\dots\times\frac{3n}{n}\right)\\ &=\lim_{n\to\infty}\frac{1}{n}\left[\ln\left(\frac{n+1}{n}\right)+\ln\left(\frac{n+2}{n}\right)+\ln\left(\frac{n+3}{n}\right)+\dots+\ln\left(\frac{3n}{n}\right)\right]\\ &=\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{2n}\ln\left(\frac{n+k}{n}\right)\\ &=\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{2n}\ln\left(1+\frac{k}{n}\right)\end{aligned}

This is a Riemann sum, which we can turn into an integral:

ln L = 0 2 ln ( 1 + x ) d x = [ x ln ( 1 + x ) ] 0 2 0 2 x 1 + x d x = 2 ln ( 1 + 2 ) 0 ln ( 1 + 0 ) + 0 2 1 1 + x 1 d x = 2 ln 3 + [ ln ( 1 + x ) x ] 0 2 = 2 ln 3 + ln ( 1 + 2 ) 2 ln ( 1 + 0 ) + 0 = 2 ln 3 + ln 3 2 ln 1 = 3 ln 3 2 L = e 3 ln 3 2 = ( e ln 3 ) 3 e 2 = 3 3 e 2 = 27 e 2 \begin{aligned}\ln L&=\int_0^2\ln(1+x)dx\\ &=\big[x\ln(1+x)\big]_0^2-\int_0^2\frac{x}{1+x}dx\\ &=2\ln(1+2)-0\ln(1+0)+\int_0^2 \frac{1}{1+x}-1dx\\ &=2\ln3+\big[\ln(1+x)-x\big]_0^2\\ &=2\ln3+\ln(1+2)-2-\ln(1+0)+0\\ &=2\ln3+\ln3-2-\ln1\\ &=3\ln3-2\\ \therefore L&=e^{3\ln3-2}\\ &=\left(e^{\ln3}\right)^3e^{-2}\\ &=\frac{3^3}{e^2}\\ &=\boxed{\large{\frac{27}{e^2}}}\end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...