The result will be an integer

Algebra Level 3

x = 1 + 1 1 2 + 1 2 2 + 1 + 1 2 2 + 1 3 2 + + 1 + 1 201 7 2 + 1 201 8 2 \large x=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\cdots +\sqrt{1+\frac{1}{2017^2}+\frac{1}{2018^2}}

Find x \left \lfloor \sqrt x \right \rfloor .


Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 44.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

x = 1 + 1 1 2 + 1 2 2 + 1 + 1 2 2 + 1 3 2 + 1 + 1 3 2 + 1 4 2 + . . . + 1 + 1 201 7 2 + 1 201 8 2 = n = 1 2017 1 + 1 n 2 + 1 ( n + 1 ) 2 = n = 1 2017 n 2 ( n + 1 ) 2 + ( n + 1 ) 2 + n 2 n 2 ( n + 1 ) 2 = n = 1 2017 n 4 + 2 n 3 + 3 n 2 + 2 n + 1 n 2 ( n + 1 ) 2 = n = 1 2017 ( n 2 + n + 1 ) 2 n 2 ( n + 1 ) 2 = n = 1 2017 n 2 + n + 1 n ( n + 1 ) = n = 1 2017 ( 1 + 1 n ( n + 1 ) ) = n = 1 2017 ( 1 + 1 n 1 n + 1 ) = 2017 + 1 1 1 2018 2018 \begin{aligned} x & = \sqrt{1+\frac 1{1^2} + \frac 1{2^2}} + \sqrt{1+\frac 1{2^2} + \frac 1{3^2}} + \sqrt{1+\frac 1{3^2} + \frac 1{4^2}} + ... + \sqrt{1+\frac 1{2017^2} + \frac 1{2018^2}} \\ & = \sum_{n=1}^{2017} \sqrt{1+\frac 1{n^2} + \frac 1{(n+1)^2}} \\ & = \sum_{n=1}^{2017} \sqrt{\frac {n^2(n+1)^2 + (n+1)^2 +n^2}{n^2(n+1)^2}} \\ & = \sum_{n=1}^{2017} \sqrt{\frac {n^4+2n^3+3n^2+2n+1}{n^2(n+1)^2}} \\ & = \sum_{n=1}^{2017} \sqrt{\frac {(n^2+n+1)^2}{n^2(n+1)^2}} \\ & = \sum_{n=1}^{2017} \frac {n^2+n+1}{n(n+1)} \\ & = \sum_{n=1}^{2017} \left(1 + \frac 1{n(n+1)}\right) \\ & = \sum_{n=1}^{2017} \left(1 + \frac 1n - \frac 1{n+1} \right) \\ & = 2017 + \frac 11 - \frac 1{2018} \\ & \approx 2018 \end{aligned}

x = 2018 = 44 \implies \left \lfloor \sqrt x \right \rfloor = \left \lfloor 2018 \right \rfloor = \boxed{44}

did the same except factrosation i did putting of values although question if from last year NDA paper

Nivedit Jain - 4 years, 3 months ago

Did the same way

I Gede Arya Raditya Parameswara - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...