The Spinning Cylinder (Corrected)

An infinite cylindrical shell with radius r r and charge density σ \sigma is rotating with angular speed ω \omega . If the magnetic field at the cylinder's axis can be written as α μ 0 σ ω r , \alpha \mu_{0} \sigma \omega r, find the value of α . \alpha.


Clarification: μ 0 \mu_{0} is the magnetic permitivity at vacumm.


For more problems, see my set .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rohit Gupta
Sep 10, 2017

A rotating charged hollow cylinder can be considered as a solenoid. Hence, the magnetic field inside it should be μ 0 × \mu_0 \times the current per unit length just like a solenoid.

Charge per unit length of the cylinder in terms of surface charge density is σ 2 π r \sigma 2 \pi r .

A rotating charge can be considered as current equal to q T \dfrac{q}{T} or q ω 2 π \dfrac{q \omega}{2 \pi} .

The current per unit length = Charge per unit length time period \dfrac{\text{Charge per unit length}}{\text{time period}}

= σ 2 π r ω 2 π = \dfrac{\sigma 2 \pi r\omega}{2\pi}

= σ r ω = \sigma r \omega

Magnetic field = μ 0 σ r ω . \mu_0 \sigma r \omega.

The corrent flowing through the cylinder among a piece of lenght "h" is:

I = σ ω r h I=\sigma \omega r h

Using the Ampère law for a closed,rectangular line with base "h" that extends in and above the cylinder we get:

B d s = μ i \int B ds= \mu i we divide the integral in four parts corrisponding at the sides of the rectangular line, 2 parts of the integral cancel due to the scalar product since two sides are perpendicular to the magnetic field, and a third cancel since is out of the cylinder, where there isn't any magnetic field. So we get:

B h = μ σ ω r h Bh=\mu \sigma \omega rh so

B = μ σ ω r B= \mu \sigma \omega r

elegant solution, Antonio, thanks for it

Hjalmar Orellana Soto - 3 years, 9 months ago
Steven Chase
Aug 18, 2017

Assume that the cylinder is oriented along the z axis.

Differential surface area and differential charge:

d A = 2 π r d z d Q = σ d A = 2 π σ r d z dA = 2 \pi r \, dz \\ dQ = \sigma \, dA = 2 \pi \sigma r \, dz

Current associated with differential ring of height d z dz :

I = d Q T = d Q 2 π / ω = σ ω r d z I = \frac{dQ}{T} = \frac{dQ}{2 \pi / \omega} = \sigma \omega r \, dz

Parametrize the surface:

x = r cos θ y = r sin θ z = z d l = d x ı ^ + d y ȷ ^ + d z k ^ = r sin θ d θ ı ^ + r cos θ d θ ȷ ^ + 0 k ^ x = r \cos\theta \\ y = r \sin\theta \\ z = z \\ \vec{dl} = dx \, \hat{\imath} + dy \, \hat{\jmath} + dz \, \hat{k} = -r \sin\theta \, d\theta \, \hat{\imath} + r \cos\theta \, d\theta \, \hat{\jmath} + 0 \hat{k}

Displacement vector to origin:

r = r cos θ ı ^ r sin θ ȷ ^ z k ^ \vec{r} = -r \cos\theta \hat{\imath} - r \sin\theta \hat{\jmath} - z \hat{k}

Cross-product of displacement vector with differential path vector:

d l × r = ( r z cos θ ı ^ r z sin θ ȷ ^ + r 2 k ^ ) d θ \vec{dl} \times \vec{r} = (-rz \, \cos\theta \hat{\imath} -rz \, \sin\theta \hat{\jmath} + r^2 \hat{k}) d\theta

Biot-Savart integral for total B-field at the origin:

B = μ 0 4 π 0 2 π I d l × r r 3 = μ 0 4 π 0 2 π σ ω r ( r z cos θ ı ^ r z sin θ ȷ ^ + r 2 k ^ ) ( r 2 + z 2 ) 3 2 d θ d z \vec{B} = \frac{\mu_0}{4 \pi} \int_{-\infty}^{\infty} \int_{0}^{2 \pi} \frac{I \vec{dl} \times \vec{r}}{|\vec{r}|^3} \\ = \frac{\mu_0}{4 \pi} \int_{-\infty}^{\infty} \int_{0}^{2 \pi} \frac{\sigma \omega r \, (-rz \, \cos\theta \hat{\imath} -rz \, \sin\theta \hat{\jmath} + r^2 \hat{k})}{(r^2 + z^2)^{\frac{3}{2}}} d\theta \, dz

Evaluating the θ \theta integral and noting that the x x and y y components integrate to zero gives:

B = μ 0 σ ω r 3 k ^ 2 1 ( r 2 + z 2 ) 3 2 d z = μ 0 σ ω r 3 k ^ 2 2 r 2 = μ 0 σ ω r k ^ \vec{B} = \frac{\mu_0 \sigma \omega r^3 \hat{k}}{2} \int_{-\infty}^{\infty} \frac{1}{(r^2 + z^2)^{\frac{3}{2}}} dz \\ = \frac{\mu_0 \sigma \omega r^3 \hat{k}}{2} \frac{2}{r^2} = \boxed{\mu_0 \sigma \omega r \, \hat{k}}

The proportionality constant out in front is thus 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...