The Square of A Complex Number

Algebra Level 2

α = 1 2 + 1 2 i , α 2 = ? \large\displaystyle \alpha = \frac{1}{ \sqrt{2}} + \frac{1}{ \sqrt{2}}i \quad , \quad \alpha^2 = \, ?

Notation : i i is the imaginary number 1 \sqrt{-1} .

1 1 1 + 1 4 i 1+\frac{1}{4i} 1 2 -\frac{1}{2} i i

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Brody Acquilano
Jan 8, 2016

Observe that:

α 2 = ( 1 2 + 1 2 i ) 2 \displaystyle \alpha ^{2} = \bigg ( \frac{1}{ \sqrt{2}} + \frac{1}{ \sqrt{2}}i \bigg )^{2}

α 2 = ( 1 2 + 1 2 i ) ( 1 2 + 1 2 i ) \displaystyle \alpha ^{2} = \bigg ( \frac{1}{ \sqrt{2}} + \frac{1}{ \sqrt{2}}i \bigg ) \bigg ( \frac{1}{ \sqrt{2}} + \frac{1}{ \sqrt{2}}i \bigg )

Using the distibutive property over addition we get:

α 2 = 1 2 × 1 2 + 1 2 × 1 2 i + 1 2 i × 1 2 + 1 2 i × 1 2 i \displaystyle \alpha ^{2} = \frac{1}{ \sqrt{2}} \times \frac{1}{ \sqrt{2}} + \frac{1}{ \sqrt{2}} \times \frac{1}{ \sqrt{2}}i + \frac{1}{ \sqrt{2}}i \times \frac{1}{ \sqrt{2}} + \frac{1}{ \sqrt{2}}i \times \frac{1}{ \sqrt{2}}i

α 2 = 1 2 + 1 2 i + 1 2 i + 1 2 i 2 \displaystyle \alpha ^{2} = \frac{1}{2}+ \frac{1}{2}i + \frac{1}{2}i +\frac{1}{2}i^{2}

Substituting i 2 = 1 i^{2} = -1 :

α 2 = 1 2 + 1 2 i + 1 2 i 1 2 \displaystyle \alpha ^{2} = \frac{1}{2}+ \frac{1}{2}i + \frac{1}{2}i - \frac{1}{2}

α 2 = 2 ( 1 2 i ) \displaystyle \alpha ^{2} = 2 \bigg (\frac{1}{2}i \bigg)

α 2 = 2 2 i \displaystyle \alpha ^{2} = \frac{2}{2}i

α 2 = i \displaystyle \alpha ^{2} = i

Sahil Bansal
Jan 9, 2016

C l e a r l y , α = c o s ( π / 4 ) + i s i n ( π / 4 ) α = e i ( π / 4 ) α 2 = ( e i ( π / 4 ) ) 2 = e i ( π / 2 ) = c o s ( π / 2 ) + i s i n ( π / 2 ) = i . Clearly,\quad \alpha =cos(\pi /4)+isin(\pi /4)\\ \\ \Rightarrow \alpha ={ e }^{ i(\pi /4) }\\ \\ \therefore { \quad \alpha }^{ 2 }={ { (e }^{ i(\pi /4) } })^{ 2 }={ e }^{ i(\pi /2) }=cos(\pi /2)+isin(\pi /2)=\boxed{i}.

Ahh Euler's Formula, I hadn't thought of that. Thanks for sharing.

Brody Acquilano - 5 years, 5 months ago

Log in to reply

Euler's Formula with De Moivre's Theorem is very useful here.

Trevor B. - 5 years, 5 months ago

Dat was brilliant..upvoted

Nithin Nithu - 5 years, 5 months ago
Roberto Gallotta
Jan 10, 2016

Solving the square: ( a + b ) 2 = a 2 + b 2 + 2 a b (a + b)^2 = a^2 + b^2 + 2ab

α 2 = 1 2 + 1 2 ( 1 ) + 2 1 2 1 2 i \alpha^2 = \frac{1}{2} + \frac{1}{2}(-1) + 2*\frac{1}{\sqrt{2}}*\frac{1}{\sqrt{2}}i (note that 2 1 2 1 2 2*\frac{1}{\sqrt{2}}*\frac{1}{\sqrt{2}} is equal to 1)

= 1 2 1 2 + i = i = \frac{1}{2} - \frac{1}{2} + i = \boxed{i}

Jeffrey H.
Nov 7, 2018

This number is a the first eighth root of unity. We can see that α 2 = ( e 2 π 8 ) 2 = e 4 π 8 , \alpha^2=\left(e^\frac{2\pi}{8}\right)^2=e^\frac{4\pi}{8}, which is the second eighth root of unity. The second eighth root of unity is i \boxed{i} .

Majid Suwaid
Jan 11, 2016

By covert it to polar form:

r=1.

Theta =pi/4.

a^2=(1)^1/2 * (cos (pi/4* 2 )+i sin (pi/4 * 2)).

a^2=1*(cos (pi/2)+i sin (pi/2)).

Now from polar form to standard form:

a^2=1*(0+i).

a^2=i.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...