If α , β , γ are the roots of the equation x 3 + 2 x 2 − 3 x − 2 = 0
Then find the value of
α 3 ( α + 1 ) 2 + β 3 ( β + 1 ) 2 + γ 3 ( γ + 1 ) 2
Inspired by Newton's Sums
This is an original problem and is a part of the set My Creations
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
α , β , γ are the roots of the equation x 3 + 2 x 2 − 3 x − 2 = 0
We have,
x 3 = 2 + 3 x − 2 x 2 ( 1 )
Also,
x ( x 2 + 2 x − 3 ) ( x + 1 ) 2 − 4 ( x + 1 ) 2 = 2 = x 2 x = 0 = 4 + x 2 ( 2 )
Since α , β , γ are the roots of the equation they must satisfy ( 1 ) & ( 2 ) as well.
( 1 ) × ( 2 ) gives,
x 3 × ( x + 1 ) 2 ⟹ c y c α , β , γ ∑ x 3 × ( x + 1 ) 2 = ( 2 + 3 x − 2 x 2 ) × ( 4 + x 2 ) = ( x 4 + 1 4 + 8 x − 8 x 2 ) = c y c α , β , γ ∑ ( x 4 + 1 4 + 8 x − 8 x 2 ) ( 3 )
We have,
α + β + γ α β + β γ + γ α α 2 + β 2 + γ 2 α β γ = − 2 = − 3 = ( α + β + γ ) 2 − 2 × ( α β + β γ + γ α ) = 1 0 = 2
we can note that
c y c α , β , γ ∑ α 2 = c y c α , β , γ ∑ β γ
Substituting these values in ( 3 ) we get,
c y c α , β , γ ∑ x 3 × ( x + 1 ) 2 = − 6 + 4 2 + − 1 6 + − 8 0 = − 6 0
Problem Loading...
Note Loading...
Set Loading...
If α , β , γ are the roots of the equation x 3 + 2 x 2 − 3 x − 2 = 0 , then
α 3 + 2 α 2 − 3 α − 2 = 0 , → ( i )
β 3 + 2 β 2 − 3 β − 2 = 0 , → ( i i )
γ 3 + 2 γ 2 − 3 γ − 2 = 0 , → ( i i i )
Multiplying ( i ) by α 2 , ( i i ) by β 2 and ( i i i ) by γ 2 , we get,
α 5 + 2 α 4 − 3 α 3 − 2 α 2 = 0
β 5 + 2 β 4 − 3 β 3 − 2 β 2 = 0
γ 5 + 2 γ 4 − 3 γ 3 − 2 γ 2 = 0
Adding all the 3 equations above, we get,
( α 5 + β 5 + γ 5 ) + 2 ( α 4 + β 4 + γ 4 ) − 3 ( α 3 + β 3 + γ 3 ) − 2 ( α 2 + β 2 + γ 2 ) = 0
⟹ ( α 5 + β 5 + γ 5 ) + 2 ( α 4 + β 4 + γ 4 ) = 3 ( α 3 + β 3 + γ 3 ) + 2 ( α 2 + β 2 + γ 2 )
We require ( α 5 + β 5 + γ 5 ) + 2 ( α 4 + β 4 + γ 4 ) + ( α 3 + β 3 + γ 3 ) ,
So we add ( α 3 + β 3 + γ 3 ) on both sides of the above equation, resulting,
( α 5 + β 5 + γ 5 ) + 2 ( α 4 + β 4 + γ 4 ) + ( α 3 + β 3 + γ 3 ) = 4 ( α 3 + β 3 + γ 3 ) + 2 ( α 2 + β 2 + γ 2 ) → ( i v )
→ α + β + γ = − 2
→ α β + β γ + γ α = − 3
→ α β γ = 2
⟹ ( α 2 + β 2 + γ 2 ) = ( α + β + γ ) 2 − 2 ( α β + β γ + γ α ) = 1 0 → ( v )
⟹ ( α 3 + β 3 + γ 3 ) = ( α + β + γ ) [ ( α 2 + β 2 + γ 2 ) − ( α β + β γ + γ α ) ] + 3 α β γ = − 2 0 → ( v i )
Substituting ( v ) and ( v i ) in ( i v ) ,
We obtain the final answer
⟹ ( α 5 + β 5 + γ 5 ) + 2 ( α 4 + β 4 + γ 4 ) + ( α 3 + β 3 + γ 3 ) = 4 ( − 2 0 ) + 2 ( 1 0 ) = − 6 0