The story of 3 cubes

Algebra Level 5

If α , β , γ \alpha,\beta,\gamma are the roots of the equation x 3 + 2 x 2 3 x 2 = 0 x^3+2x^2-3x-2=0

Then find the value of

α 3 ( α + 1 ) 2 + β 3 ( β + 1 ) 2 + γ 3 ( γ + 1 ) 2 \large \alpha^3(\alpha+1)^2+\beta^3(\beta+1)^2+\gamma^3(\gamma+1)^2


Inspired by Newton's Sums

This is an original problem and is a part of the set My Creations


The answer is -60.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Skanda Prasad
Oct 2, 2017

If α , β , γ \alpha,\beta,\gamma are the roots of the equation x 3 + 2 x 2 3 x 2 = 0 x^3+2x^2-3x-2=0 , then

α 3 + 2 α 2 3 α 2 = 0 \alpha^3+2\alpha^2-3\alpha-2=0 , \rightarrow ( i ) (i)

β 3 + 2 β 2 3 β 2 = 0 \beta^3+2\beta^2-3\beta-2=0 , \rightarrow ( i i ) (ii)

γ 3 + 2 γ 2 3 γ 2 = 0 \gamma^3+2\gamma^2-3\gamma-2=0 , \rightarrow ( i i i ) (iii)

Multiplying ( i ) (i) by α 2 \alpha^2 , ( i i ) (ii) by β 2 \beta^2 and ( i i i ) (iii) by γ 2 \gamma^2 , we get,

α 5 + 2 α 4 3 α 3 2 α 2 \alpha^5+2\alpha^4-3\color{#D61F06}\alpha^3-\color{#20A900}2\alpha^2 = 0 =0

β 5 + 2 β 4 3 β 3 2 β 2 \beta^5+2\beta^4-3\color{#D61F06}\beta^3-\color{#20A900}2\beta^2 = 0 =0

γ 5 + 2 γ 4 3 γ 3 2 γ 2 \gamma^5+2\gamma^4-3\color{#D61F06}\gamma^3-\color{#20A900}2\gamma^2 = 0 =0

Adding all the 3 equations above, we get,

( α 5 + β 5 + γ 5 ) + 2 ( α 4 + β 4 + γ 4 ) 3 ( α 3 + β 3 + γ 3 ) 2 ( α 2 + β 2 + γ 2 ) (\alpha^5+\beta^5+\gamma^5)+2(\alpha^4+\beta^4+\gamma^4)-\color{#D61F06}3(\alpha^3+\beta^3+\gamma^3)-\color{#20A900}2(\alpha^2+\beta^2+\gamma^2) = 0 =0

\implies ( α 5 + β 5 + γ 5 ) + 2 ( α 4 + β 4 + γ 4 ) = 3 ( α 3 + β 3 + γ 3 ) + 2 ( α 2 + β 2 + γ 2 ) (\alpha^5+\beta^5+\gamma^5)+2(\alpha^4+\beta^4+\gamma^4)=\color{#D61F06}3(\alpha^3+\beta^3+\gamma^3)+\color{#20A900}2(\alpha^2+\beta^2+\gamma^2)

We require ( α 5 + β 5 + γ 5 ) + 2 ( α 4 + β 4 + γ 4 ) + ( α 3 + β 3 + γ 3 ) (\alpha^5+\beta^5+\gamma^5)+2(\alpha^4+\beta^4+\gamma^4)+\color{#D61F06}(\alpha^3+\beta^3+\gamma^3) ,

So we add ( α 3 + β 3 + γ 3 ) \color{#D61F06}(\alpha^3+\beta^3+\gamma^3) on both sides of the above equation, resulting,

( α 5 + β 5 + γ 5 ) + 2 ( α 4 + β 4 + γ 4 ) + ( α 3 + β 3 + γ 3 ) = 4 ( α 3 + β 3 + γ 3 ) + 2 ( α 2 + β 2 + γ 2 ) (\alpha^5+\beta^5+\gamma^5)+2(\alpha^4+\beta^4+\gamma^4)+\color{#D61F06}(\alpha^3+\beta^3+\gamma^3)=4(\alpha^3+\beta^3+\gamma^3)+\color{#20A900}2(\alpha^2+\beta^2+\gamma^2) \rightarrow ( i v ) (iv)

\rightarrow α + β + γ \color{#EC7300}\alpha+\beta+\gamma = 2 =-2

\rightarrow α β + β γ + γ α = 3 \color{#E81990}\alpha\beta+\beta\gamma+\gamma\alpha=-3

\rightarrow α β γ = 2 \color{#3D99F6}\alpha\beta\gamma=2

\implies ( α 2 + β 2 + γ 2 ) \color{#20A900}(\alpha^2+\beta^2+\gamma^2) = ( α + β + γ ) 2 2 ( α β + β γ + γ α ) =\color{#EC7300}(\alpha+\beta+\gamma)^2 -\color{#E81990}2(\alpha\beta+\beta\gamma+\gamma\alpha) = 10 =10 \rightarrow ( v ) (v)

\implies ( α 3 + β 3 + γ 3 ) \color{#D61F06}(\alpha^3+\beta^3+\gamma^3) = ( α + β + γ ) [ ( α 2 + β 2 + γ 2 ) =\color{#EC7300}(\alpha+\beta+\gamma)[\color{#20A900}(\alpha^2+\beta^2+\gamma^2)- ( α β + β γ + γ α ) ] + 3 α β γ \color{#E81990}(\alpha\beta+\beta\gamma+\gamma\alpha)]+\color{#3D99F6}3\alpha\beta\gamma = 20 =-20 \rightarrow ( v i ) (vi)

Substituting ( v ) (v) and ( v i ) (vi) in ( i v ) (iv) ,

We obtain the final answer

\implies ( α 5 + β 5 + γ 5 ) + 2 ( α 4 + β 4 + γ 4 ) + ( α 3 + β 3 + γ 3 ) (\alpha^5+\beta^5+\gamma^5)+2(\alpha^4+\beta^4+\gamma^4)+\color{#D61F06}(\alpha^3+\beta^3+\gamma^3) = 4 ( 20 ) + 2 ( 10 ) = 60 =\color{#D61F06}4(-20)+\color{#20A900}2(10)=\color{#69047E}\boxed{-60}

α , β , γ \alpha,\beta,\gamma are the roots of the equation x 3 + 2 x 2 3 x 2 = 0 x^3+2x^2-3x-2=0

We have,

x 3 = 2 + 3 x 2 x 2 ( 1 ) \begin{aligned} x^3&=2+3x-2x^2\hspace{5mm}\color{#3D99F6}(1)\end{aligned}

Also,

x ( x 2 + 2 x 3 ) = 2 ( x + 1 ) 2 4 = 2 x x 0 ( x + 1 ) 2 = 4 + 2 x ( 2 ) \begin{aligned}x(x^2+2x-3)&=2\\ (x+1)^2-4&=\dfrac{2}{x}\hspace{3mm}\color{#3D99F6} x\neq0\\ (x+1)^2&=4+\dfrac{2}{x}\hspace{5mm}\color{#3D99F6}(2)\end{aligned}

Since α , β , γ \alpha,\beta,\gamma are the roots of the equation they must satisfy ( 1 ) \color{#3D99F6}(1) & ( 2 ) \color{#3D99F6}(2) as well.

( 1 ) × ( 2 ) \color{#3D99F6}(1)\times\color{#3D99F6}(2) gives,

x 3 × ( x + 1 ) 2 = ( 2 + 3 x 2 x 2 ) × ( 4 + 2 x ) = ( 4 x + 14 + 8 x 8 x 2 ) c y c α , β , γ x 3 × ( x + 1 ) 2 = c y c α , β , γ ( 4 x + 14 + 8 x 8 x 2 ) ( 3 ) \begin{aligned} x^3\times (x+1)^2&=(2+3x-2x^2)\times(4+\dfrac{2}{x})\\ &=(\dfrac{4}{x}+14+8x-8x^2)\\ \implies \sum_{cyc \hspace{2mm} \alpha,\beta,\gamma} x^3\times (x+1)^2&=\sum_{cyc \hspace{2mm} \alpha,\beta,\gamma}(\dfrac{4}{x}+14+8x-8x^2)\hspace{5mm}\color{#3D99F6}(3)\end{aligned}

We have,

α + β + γ = 2 α β + β γ + γ α = 3 α 2 + β 2 + γ 2 = ( α + β + γ ) 2 2 × ( α β + β γ + γ α ) = 10 α β γ = 2 \begin{aligned}\alpha+\beta+\gamma&=-2\\ \alpha\beta+\beta\gamma+\gamma\alpha&=-3\\ \alpha^2+\beta^2+\gamma^2&=(\alpha+\beta+\gamma)^2-2\times(\alpha\beta+\beta\gamma+\gamma\alpha)=10\\ \alpha\beta\gamma&=2\end{aligned}

we can note that

c y c α , β , γ 2 α = c y c α , β , γ β γ \begin{aligned}\sum_{cyc \hspace{2mm} \alpha,\beta,\gamma}\dfrac{2}{\alpha}= \sum_{cyc \hspace{2mm} \alpha,\beta,\gamma}\beta\gamma\end{aligned}

Substituting these values in ( 3 ) \color{#3D99F6}(3) we get,

c y c α , β , γ x 3 × ( x + 1 ) 2 = 6 + 42 + 16 + 80 = 60 \begin{aligned}\sum_{cyc \hspace{2mm} \alpha,\beta,\gamma} x^3\times (x+1)^2&=-6+42+-16+-80=\color{#EC7300}\boxed{\color{#333333}-60}\end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...