the story of Marvin's plane

Algebra Level pending

Marvin's private plane, flying with the wind, took 3 3 hours to travel 1800 1800 kilometers and 4 4 hours to fly back. What was the wind velocity in kilometers per hour?

100 kph 75 kph 30 kph 50 kph 37 kph 57 kph

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let the speed of the plane be V 1 V_1 and the speed of the wind be V 2 V_2

With wind \large{\text{With wind}}

Distance travelled = 1800 km =1800 \text{km}

Time taken = 3 hours =3 \text{hours}

Speed = Distance travelled Time taken = 1800 3 km/h = 600 km/h = V 1 + V 2 =\dfrac{\text{Distance travelled}}{\text{Time taken}}=\dfrac{1800}{3}\text{km/h} = 600 \text{km/h} = V_1+V_2

Opposite wind \large{\text{Opposite wind}}

Distance travelled = 1800 km =1800 \text{km}

Time taken = 4 hours =4 \text{hours}

Speed = Distance travelled Time taken = 1800 4 km/h = 450 km/h = V 1 V 2 =\dfrac{\text{Distance travelled}}{\text{Time taken}}=\dfrac{1800}{4}\text{km/h} = 450 \text{km/h} =V_1-V_2

Now,

\( \begin{align*} V_1+V_2&= 600 \text{km/h} \\

V_1-V_2&= 450 \text{km/h} \\ \end{align*}\)

Subtracting ( 2 ) (2) from ( 1 ) (1) ,

( V 1 + V 2 ) ( V 1 V 2 ) = 600 km/h 450 km/h (V_1+V_2)-(V_1-V_2)= 600 \text{km/h} -450 \text{km/h}

V 1 + V 2 V 1 + V 2 ) = 150 km/h \implies V_1+V_2-V_1+V_2)= 150 \text{km/h}

V 2 + V 2 = 150 km/h \implies V_2+V_2= 150 \text{km/h}

2 V 2 = 150 km/h \implies 2{V_2}= 150 \text{km/h}

V 2 = 150 2 km/h \implies V_2 = \dfrac{150}{2} \text{km/h}

V 2 = 75 km/h \implies V_2 = \boxed{75 \text{km/h} }

Chew-Seong Cheong
May 16, 2020

Let the velocities of the plane and wind be v v and w w respectively. Then we have:

{ In wind direction: 3 ( v + w ) = 1800 v + w = 600 . . . ( 1 ) Against wind: 4 ( v w ) = 1800 v w = 450 . . . ( 2 ) \begin{cases} \text{In wind direction:} & 3(v+w) = 1800 & \implies v + w = 600 &...(1) \\ \text{Against wind:} & 4(v-w) = 1800 & \implies v - w = 450 &...(2) \end{cases}

( 1 ) ( 2 ) : 2 w = 150 w = 75 kph \begin{aligned} (1)-(2): \quad 2w & = 150 \\ \implies w & = \boxed{\text{75 kph}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...