The story the square and the equilateral triangle

Calculus Level 3

A wire of length 12 \text{12} meters is cut into two parts, one of which is bent into a square and the other into an equilateral triangle. If the sum of their areas is a minimum, find the side length (in meters) of the equilateral triangle. Give your answer correct to two decimal places.


The answer is 2.26.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let x x be the side length of the equilateral triangle. Therefore, the side length of the square is 12 3 x 4 \dfrac {12-3x}4 . The total area of the triangle and square is given by:

A = A + A = 3 4 x 2 + ( 3 ( 4 x ) 4 ) 2 = 3 4 x 2 + 9 16 ( x 2 8 x + 16 ) = ( 3 4 + 9 16 ) x 2 9 2 x + 9 = 4 3 + 9 16 x 2 9 2 x + 9 d A d x = 4 3 + 9 8 x 9 2 \begin{aligned} A & = A_\triangle + A_\square = \frac {\sqrt 3}4x^2 + \left(\frac {3(4-x)}4\right)^2 \\ & = \frac {\sqrt 3}4x^2 + \frac 9{16} (x^2-8x+16) \\ & = \left(\frac {\sqrt 3}4 + \frac 9{16} \right)x^2-\frac 92 x+9 \\ & = \frac {4\sqrt 3 + 9}{16} x^2-\frac 92 x+9 \\ \frac {dA}{dx} & = \frac {4\sqrt 3 + 9}8 x-\frac 92 \end{aligned}

A A is minimum \red{\text{minimum}} , when d A d x = 0 \dfrac {dA}{dx} = 0 or when:

4 3 + 9 8 x = 9 2 x = 36 4 3 + 9 2.26 m \begin{aligned} \frac {4\sqrt 3 + 9}8 x & = \frac 92 \\ \implies x & = \frac {36}{4\sqrt 3+9} \approx \boxed{2.26} \text{ m} \end{aligned}

Note that d 2 A d x 2 > 0 \dfrac {d^2 A}{dx^2} > 0 for all x x , therefore, A A is minimum \red{\text{minimum}} when x 2.26 x \approx 2.26 .

Indeed. The solution to the problem as stated is found when x = 0.00. It's important to not use the first derivative test blindly, lest one accidentally minimize the value of a function one is allegedly trying to maximize.

Richard Desper - 1 year, 1 month ago

Let the length of each side of the square be a a and of the triangle be b b . Then 4 a + 3 b = 12 a 2 + 3 4 b 2 = a 2 ( 1 + 4 3 9 ) 8 3 3 a + 4 3 = 9 + 4 3 9 ( a 12 3 9 + 4 3 ) 2 + 4 3 48 9 + 4 3 4 3 48 9 + 4 3 4a+3b=12\implies a^2+\dfrac{\sqrt 3}{4}b^2= a^2(1+\frac{4\sqrt 3}{9})-\frac{8\sqrt 3}{3}a+4\sqrt 3=\frac{9+4\sqrt 3}{9}(a-\frac{12\sqrt 3}{9+4\sqrt 3})^2+4\sqrt 3-\frac{48}{9+4\sqrt 3}\geq 4\sqrt 3-\frac{48}{9+4\sqrt 3} .

So the area is minimum when a = 12 3 9 + 4 3 a=\frac{12\sqrt 3}{9+4\sqrt 3} and b = 36 9 + 4 3 2.26 b=\frac{36}{9+4\sqrt 3}\approx \boxed {2.26} .

Marvin Kalngan
May 1, 2020

Let x = side length of the square and y = side length of the equilateral triangle

4x+3y=12 \text{4x+3y=12}

4x=12 - 3y \text{4x=12 - 3y}

x = 12 3 y 4 x=\dfrac{12-3y}{4}

A = x 2 + 3 4 y 2 A=x^2+\dfrac{\sqrt{3}}{4}y^2

A = ( 12 3 y 4 ) 2 + 3 4 y 2 A=\left(\dfrac{12-3y}{4}\right)^2+\dfrac{\sqrt{3}}{4}y^2

A = 144 72 y + 9 y 2 16 + 3 4 y 2 A=\dfrac{144- 72y+9y^2}{16}+\dfrac{\sqrt{3}}{4}y^2

Take the derivative using the Quotient Rule.

d A d y = 16 ( 72 + 18 y ) ( 144 72 y + 9 y 2 ) ( 0 ) 1 6 2 + 2 ( 3 4 ) ( y ) \dfrac{dA}{dy}=\dfrac{16(-72+18y)-(144- 72y+9y^2)(0)}{16^2}+2\left(\dfrac{\sqrt{3}}{4}\right)(y)

= 1152 + 288 y 256 + 3 2 y =\dfrac{-1152+288y}{256}+\dfrac{\sqrt{3}}{2}y

Equate the derivative to zero.

1152 + 288 y 256 + 3 2 y = 0 \dfrac{-1152+288y}{256}+\dfrac{\sqrt{3}}{2}y=0

1152 + 288 y 256 + 128 128 × 3 2 y = 0 \dfrac{-1152+288y}{256}+\dfrac{128}{128} \times \dfrac{\sqrt{3}}{2}y=0

1152 + 288 y 256 + 128 3 256 y = 0 \dfrac{-1152+288y}{256}+\dfrac{128\sqrt{3}}{256}y=0

1152 + 288 y + 128 3 y = 0 -1152+288y+128\sqrt{3}y=0

288 y + 128 3 y = 1152 288y+128\sqrt{3}y=1152

y 2.26 meters y \approx \boxed{\text{2.26 meters}}

It should be minimum \red{\text{minimum}} and not maximum. See my solution. A 3.91 A \approx 3.91 when x 2.26 x \approx 2.26 . An equilateral triangle with side length 4 has area A 6.93 A_\triangle \approx 6.93 . And area of a square with side length 3 is A = 9 A_\square = 9 . Both larger than A A .

Chew-Seong Cheong - 1 year, 1 month ago

Log in to reply

Okay. I have edited the problem.

Marvin Kalngan - 1 year, 1 month ago

2 pending reports

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...