The Strange Integral

Calculus Level 2

Evaluate the integral below.

1 1 + x 2 d x \large \int_{-\infty}^\infty\frac{1}{1+x^2} dx

None of the above π \pi 10 \sqrt{10} e \textit{e}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Oct 22, 2018

I = 1 1 + x 2 d x Since the integrand is even. = 2 0 1 1 + x 2 d x Let x = tan θ d x = sec 2 θ = 2 0 π 2 sec 2 θ 1 + tan 2 θ d θ Note that 1 + tan 2 θ = sec 2 θ = 2 0 π 2 d θ = 2 θ 0 π 2 = π \begin{aligned} I & = \int_{-\infty}^\infty \frac 1{1+x^2} dx & \small \color{#3D99F6} \text{Since the integrand is even.} \\ & = 2 \int_0^\infty \frac 1{1+x^2} dx & \small \color{#3D99F6} \text{Let }x = \tan \theta \implies dx = \sec^2 \theta \\ & = 2 \int_0^\frac \pi 2 \frac {\sec^2 \theta}{1+\tan^2 \theta} d\theta & \small \color{#3D99F6} \text{Note that }1 + \tan^2 \theta = \sec^2 \theta \\ & = 2 \int_0^\frac \pi 2 d\theta \\ & = 2 \theta\ \bigg|_0^\frac \pi 2 = \boxed \pi \end{aligned}

Corwin Silverman
Oct 21, 2018

We will first prove that:

1 1 + x 2 d x = t a n 1 ( x ) + C \int\frac{1}{1+x^2} dx = tan^{-1}(x) + C

If we define f(x) as:

d d x t a n ( x ) \frac{d}{dx} tan(x)

Then by the inverse function rule:

d d x t a n 1 ( x ) = 1 f ( t a n 1 ( x ) ) \frac{d}{dx} tan^{-1}(x) = \frac{1}{f(tan^{-1}(x))}

By the quotient rule:

f ( x ) = d d x s i n ( x ) c o s ( x ) = c o s 2 ( x ) ( s i n 2 ( x ) ) c o s 2 ( x ) = 1 c o s 2 ( x ) = s e c 2 x f(x) = \frac{d}{dx} \frac{sin(x)}{cos(x)} = \frac{cos^2(x)-(-sin^2(x))}{cos^2(x)} = \frac{1}{cos^2(x)} = sec^2x

It follows that:

d d x t a n 1 ( x ) = 1 s e c 2 ( t a n 1 ( x ) ) = 1 1 + t a n 2 ( t a n 1 ( x ) ) = 1 1 + x 2 \frac{d}{dx} tan^{-1}(x) = \frac{1}{sec^2(tan^{-1}(x))} = \frac{1}{1+tan^2(tan^{-1}(x))} = \frac{1}{1+x^2}

Now that we have determined the indefinite integral:

1 1 + x 2 d x = ( l i m x t a n 1 ( x ) ) ( l i m x t a n 1 ( x ) ) = π 2 π 2 = π \int_{-\infty}^\infty\frac{1}{1+x^2} dx = (lim_{x\rightarrow\infty}tan^{-1}(x)) - (lim_{x\rightarrow-\infty}tan^{-1}(x)) = \frac{\pi}{2} - \frac{-\pi}{2} = \pi

James Harbour
Oct 21, 2018

Upon first inspection of the integral, we notice that this is a definite integral form of the identity 1 1 + x 2 d x = a r c t a n ( x ) \\ \int { \frac { 1 }{ 1+{ x }^{ 2 } } } dx = arctan(x) However, because the bounds are infinities, this definite integral is improper and therefore must be evaluated via limits lim t t t 1 1 + x 2 d x lim t arctan ( t ) arctan ( t ) = π 2 + π 2 = π \Rightarrow \lim _{ t\rightarrow \infty }{ \int _{ -t }^{ t }{ \frac { 1 }{ 1+{ x }^{ 2 } } dx } } \\ \Rightarrow \lim _{ t\rightarrow \infty }{ \arctan { (t) } -\arctan { (-t) } } \\ =\frac { \pi }{ 2 } +\frac { \pi }{ 2 } \quad =\quad \pi \\

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...