The sum

Algebra Level 3

n = 1 50 n 1 + n 2 + n 4 \sum_{n=1}^{50}\frac{n}{1+n^2+n^4} Find the value of the above expression to 3 decimal places.


The answer is 0.499.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Marco Brezzi
Aug 6, 2017

Relevant wiki: Partial Fractions , Telescoping Series

S = n = 1 50 n n 4 + n 2 + 1 = n = 1 50 n ( n 2 + 1 ) 2 n 2 = n = 1 50 n ( n 2 + n + 1 ) ( n 2 n + 1 ) = 1 2 n = 1 50 1 n 2 n + 1 1 n 2 + n + 1 = 1 2 n = 1 50 1 n 2 n + 1 1 ( n + 1 ) 2 ( n + 1 ) + 1 = 1 2 ( 1 1 2 1 + 1 1 ( 50 + 1 ) 2 ( 50 + 1 ) + 1 ) = 1275 2551 0.499 \begin{aligned} S &=\sum_{n=1}^{50} \dfrac{n}{n^4+n^2+1}\\ &=\sum_{n=1}^{50} \dfrac{n}{(n^2+1)^2-n^2}\\ &=\sum_{n=1}^{50} \dfrac{n}{(n^2+n+1)(n^2-n+1)}\\ &=\dfrac{1}{2}\sum_{n=1}^{50} \dfrac{1}{n^2-n+1}-\dfrac{1}{n^2+n+1}\\ &=\dfrac{1}{2}\sum_{n=1}^{50} \dfrac{1}{n^2-n+1}-\dfrac{1}{(n+1)^2-(n+1)+1}\\ &=\dfrac{1}{2}\left(\dfrac{1}{1^2-1+1}-\dfrac{1}{(50+1)^2-(50+1)+1}\right)\\ &=\dfrac{1275}{2551}≈0.499 \end{aligned}

Zach Abueg
Aug 6, 2017

S = n = 1 50 n 1 + n 2 + n 4 = n = 1 50 ( 1 2 ( n 2 n + 1 ) 1 2 ( n 2 + n + 1 ) ) = ( 1 2 1 6 ) a 1 + ( 1 6 1 14 ) a 2 + ( 1 14 1 26 ) a 3 + + ( 1 4706 1 4902 ) a 49 + ( 1 4902 1 5102 ) a 50 = 1 2 1 5102 0.499 \displaystyle \begin{aligned} S & = \sum_{n \ = \ 1}^{50} \frac{n}{1 + n^2 + n^4} \\ & = \sum_{n \ = \ 1}^{50} \left( \frac{1}{2\left(n^2 - n + 1\right)} - \frac{1}{2\left(n^2 + n + 1\right)} \right) \\ & = \underbrace{\left( \frac 12 - \frac 16\right)}_{a_1} + \underbrace{\left(\frac 16 - \frac{1}{14}\right)}_{a_2} + \underbrace{\left(\frac{1}{14} - \frac{1}{26}\right)}_{a_3} + \cdots + \underbrace{\left(\frac{1}{4706} - \frac{1}{4902}\right)}_{a_{49}} + \underbrace{\left(\frac{1}{4902} - \frac{1}{5102}\right)}_{a_{50}} \\ & = \frac 12 - \frac{1}{5102} \\ & \approx \boxed{0.499} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...