The sum is 1

Algebra Level 4

6 a 3 + 6 b 3 + 6 c 3 + 6 d 3 a 2 + b 2 + c 2 + d 2 + N 6a^3+6b^3+6c^3+6d^3\geq a^2+b^2+c^2+d^2+N is always true for N N , if a , b , c , d a, b, c, d are positive numbers, such that a + b + c + d = 1 a+b+c+d=1 .

If the maximum value of N N can be expressed in a x y \dfrac{x}{y} formula, where gcd ( x , y ) = 1 \text{gcd}(x, y)=1 , then find the value of x + y x+y .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Áron Bán-Szabó
Jul 15, 2017

For N = 1 8 N=\dfrac{1}{8} : If a = b = c = d = 1 4 a=b=c=d=\dfrac{1}{4} , then 6 a 3 + 6 b 3 + 6 c 3 + 6 d 3 = a 2 + b 2 + c 2 + d 2 + N 6a^3+6b^3+6c^3+6d^3= a^2+b^2+c^2+d^2+N , so the maximum value of N N is at most 1 8 \dfrac{1}{8} . We will show that for N = 1 8 N=\dfrac{1}{8} the inequality holds true.

Using Chebyshey's inequality 4 ( a 3 + b 3 + c 3 + d 3 ) ( a + b + c + d ) ( a 2 + b 2 + c 2 + d 2 ) 4(a^3+b^3+c^3+d^3)\geq (a+b+c+d)(a^2+b^2+c^2+d^2) , so 4 ( a 3 + b 3 + c 3 + d 3 ) a 2 + b 2 + c 2 + d 2 4(a^3+b^3+c^3+d^3)\geq a^2+b^2+c^2+d^2 . Using Chebyshey's inequality again: 2 ( a 3 + b 3 + c 3 + d 3 ) ( a + b + c + d ) 2 8 = 1 8 2(a^3+b^3+c^3+d^3)\geq \dfrac{(a+b+c+d)^2}{8}=\dfrac{1}{8} By adding the inequalities we get that 6 a 3 + 6 b 3 + 6 c 3 + 6 d 3 a 2 + b 2 + c 2 + d 2 + 1 8 6a^3+6b^3+6c^3+6d^3\geq a^2+b^2+c^2+d^2+\dfrac{1}{8}

Therefore tha answer is: 1 + 8 = 9 1+8=\boxed{9} .

Thank you for giving an idea about chebyshey inequality!!

Shishir Shahi - 3 years, 10 months ago
Steven Yuan
Jul 17, 2017

By the Power Mean Inequality,

a 3 + b 3 + c 3 + d 3 4 3 a 2 + b 2 + c 2 + d 2 4 . \sqrt[3]{\dfrac{a^3 + b^3 + c^3 + d^3}{4}} \geq \sqrt{\dfrac{a^2 + b^2 + c^2 + d^2}{4}}.

This gives 4 ( a 3 + b 3 + c 3 + d 3 ) 2 ( a 2 + b 2 + c 2 + d 2 ) 3 . 4(a^3 + b^3 + c^3 + d^3)^2 \geq (a^2 + b^2 + c^2 + d^2)^3. Square rooting both sides and multiplying by three yields

6 ( a 3 + b 3 + c 3 + d 3 ) 3 ( a 2 + b 2 + c 2 + d 2 ) 3 / 2 . 6(a^3 + b^3 + c^3 + d^3) \geq 3(a^2 + b^2 + c^2 + d^2)^{3/2}.

Thus, our inequality becomes 3 ( a 2 + b 2 + c 2 + d 2 ) 3 / 2 a 2 + b 2 + c 2 + d 2 + N . 3(a^2 + b^2 + c^2 + d^2)^{3/2} \geq a^2 + b^2 + c^2 + d^2 + N. Letting x = a 2 + b 2 + c 2 + d 2 x = a^2 + b^2 + c^2 + d^2 and subtracting x x from both sides of the inequality yields 3 x 3 / 2 x N . 3x^{3/2} - x \geq N.

Notice that the maximum possible value of N N is precisely the minimum possible value of 3 x 3 / 2 x . 3x^{3/2} - x. First, we shall find the absolute minimum value of this function without any restrictions on the value of x . x. Let f ( x ) = 3 x 3 / 2 x . f(x) = 3x^{3/2} - x. We have f ( x ) = 9 2 x 1 / 2 1. f'(x) = \frac{9}{2}x^{1/2} - 1. Setting this equal to 0 gives x = 4 81 . x = \frac{4}{81}. Since f ( x ) = 9 4 x 1 / 2 > 0 , f''(x) = \frac{9}{4}x^{-1/2} > 0, for all positive real values of x , x, we conclude that at x = 4 81 , x = \frac{4}{81}, the value of 3 x 3 / 2 x 3x^{3/2} - x is at its absolute minimum.

However, by the Power Mean Inequality again,

a 2 + b 2 + c 2 + d 2 4 a + b + c + d 4 a 2 + b 2 + c 2 + d 2 ( a + b + c + d ) 2 4 x 1 4 . \begin{aligned} \sqrt{\dfrac{a^2 + b^2 + c^2 + d^2}{4}} &\geq \dfrac{a + b + c + d}{4} \\ a^2 + b^2 + c^2 + d^2 &\geq \dfrac{(a + b + c + d)^2}{4} \\ x &\geq \dfrac{1}{4}. \end{aligned}

Since 1 4 > 4 81 , \frac{1}{4} > \frac{4}{81}, the actual minimum value of 3 x 3 / 2 x 3x^{3/2} - x occurs at x = 1 4 . x = \frac{1}{4}. Thus,

N 3 ( 1 4 ) 3 / 2 1 4 = 3 8 1 4 = 1 8 , N \leq 3 \left ( \dfrac{1}{4} \right )^{3/2} - \dfrac{1}{4} = \dfrac{3}{8} - \dfrac{1}{4} = \dfrac{1}{8},

and x + y = 1 + 8 = 9 . x + y = 1 + 8 = \boxed{9}. Equality holds when a = b = c = d = 1 4 . a = b = c = d = \frac{1}{4}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...