The Sum of Square

Given that a b 15 \large \sqrt{ab-15} and a + b 8 \large \sqrt{a+b-8} are integers. And that

a 2 b 2 + 16 a + 16 b + 80 = a 2 + 32 a b + b 2 \large a^2b^2+16a+16b+80=a^2+32ab+b^2

Find a 2 + b 2 \large a^2+b^2 .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 28, 2017

Let a b 15 = m \sqrt{ab-15}=m and a + b 8 = n \sqrt{a+b-8} = n , where m m and n n are integers. Then a b = m 2 + 15 ab = m^2+15 and a + b = n 2 + 8 a+b=n^2+8 and

a 2 b 2 + 16 a + 16 b + 80 = a 2 + 32 a b + b 2 ( a b ) 2 + 16 ( a + b ) + 80 = ( a + b ) 2 + 30 a b ( m 2 + 15 ) 2 + 16 ( n 2 + 8 ) + 80 = ( n 2 + 8 ) 2 + 30 ( m 2 + 15 ) m 4 + 30 m 2 + 225 + 16 n 2 + 128 + 80 = n 4 + 16 n 2 + 64 + 30 m 2 + 450 m 4 = n 4 + 3 4 \begin{aligned} a^2b^2 + 16a+16b + 80 & = a^2+32ab+b^2 \\ (ab)^2 + 16(a+b)+80 & = (a+b)^2 +30ab \\ (m^2+15)^2 + 16(n^2+8) + 80 & = (n^2+8)^2 + 30(m^2+15) \\ m^4+30m^2+225 + 16n^2+128 + 80 & = n^4+16n^2+64 + 30m^2+450 \\ m^4 & = n^4 + 3^4 \end{aligned}

By Fermat last theorem , positive integer solution does not exist for x 4 + y 4 = z 4 x^4+y^4=z^4 . Therefore, n = 0 n=0 and m = 3 m=3 ; and a b = 24 ab=24 and a + b = 8 a+b=8 , a 2 + b 2 = ( a + b ) 2 2 a b = 8 2 2 ( 24 ) = 16 \implies a^2+b^2 = (a+b)^2 - 2ab = 8^2-2(24) = \boxed{16} .

So a and b are 4+ sqrt(8)i and 4 - sqrt(8)i

Peter Lock - 2 years, 1 month ago
Chan Tin Ping
Nov 20, 2017

a 2 b 2 + 16 a + 16 b + 80 = a 2 + 32 a b + b 2 a 2 b 2 30 a b + 80 = a 2 + 2 a b + b 2 16 ( a + b ) ( a b 15 ) 2 = ( a + b 8 ) 2 + 81 ( a b 15 ) 2 = ( a + b 8 ) 2 + 3 4 \begin{aligned} a^2b^2+16a+16b+80&=a^2+32ab+b^2\\ a^2b^2-30ab+80&=a^2+2ab+b^2-16(a+b)\\ (ab-15)^2&=(a+b-8)^2+81\\ (ab-15)^2&=(a+b-8)^2+3^4\\ \end{aligned} As a b 15 \sqrt{ab-15} and a + b 8 \sqrt{a+b-8} are integers, ( a b 15 ab-15 ) and ( a + b 8 a+b-8 ) are perfect square, which means that ( a b 15 ) 2 (ab-15)^2 and ( a + b 8 ) 2 (a+b-8)^2 are integers power of 4 ( E x p : 0 , 1 , 16 , 81 , Exp:0,1,16,81,… ). By Fermat Last Theorem, there does not exist postive integer solution for x 4 + y 4 = z 4 x^4+y^4=z^4 . As ( a b 15 ab-15 ) and ( a + b 8 a+b-8 ) are nonnegative, we can conclude that a + b 8 = 0 a+b-8=0 and ( a b 15 ) 2 = 3 4 (ab-15)^2=3^4 .

We get ( a + b = 8 a+b=8 ) and ( a b = 24 ab=24 ). a 2 + b 2 = ( a + b ) 2 2 a b = 64 2 × 24 = 16 \begin{aligned} a^2+b^2&=(a+b)^2-2ab\\ &=64-2×24\\ &=16 \end{aligned} The answer is 16 \large 16 .

a b = 24 ab=24 not 26 26

Dexter Woo Teng Koon - 3 years, 6 months ago

Log in to reply

Thanks, already change it.

Chan Tin Ping - 3 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...