The sum of the sum of the sum

Let be x x the sum of all the digits of 555 5 5555 5555^{5555} ; let be y y the sum of digits of x x and let be z z the sum of all digits of y y . Find z z .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Pi Han Goh
Apr 23, 2016

Relevant wiki: Application of Divisibility Rules

Let N N denote the number of digits of the number 555 5 5555 5555^{5555} . Then N = log 10 555 5 5555 + 1 = 5555 log 105555 + 1 = 20802 N =\left \lfloor \log_{10} 5555^{5555} + 1 \right \rfloor = \lfloor 5555 \log{10} 5555 + 1 \rfloor = 20802 .

So the maximum value of x x is, max ( x ) = 1 + 9 + 9 + 9 + + 9 20801 9’s = 1 + 9 ( 20801 ) = 187210 \max(x) = 1 + \underbrace{ 9 + 9 + 9 + \cdots + 9}_{20801\text{ 9's}} = 1 + 9(20801) = 187210 .

Similarly, the maximum value of y y is max ( y ) = 1 + 7 + 9 + 9 + 9 + 9 = 44 \max(y) = 1 + 7+9+9+9+9 = 44 .

And, the the maximum value of z z is max ( z ) = 3 + 9 = 12 \max(z) = 3+9 = 12 . Thus 1 z 12 1\leq z \leq 12 .

By application of divisibility rules , the repeated sum of digits of 555 5 5555 5555^{5555} is equal to 555 5 5555 9 ( 5555 m o d 9 ) 5555 9 2 5555 9 2 5555 ( m o d ( ϕ ( 9 ) ) ) = 2 5 9 5 . 5555^{5555} \equiv_9 (5555 \bmod 9)^{5555} \equiv_9 2^{5555} \equiv_9 2^{5555 \pmod{ (\phi(9))} } = 2^5 \equiv_9 5 \; .

The penultimate step follows from Euler's totient function .

Hence, z 5 ( m o d 9 ) z \equiv 5 \pmod 9 . And because 1 z 12 1\leq z \leq 12 , then z = 5 z = \boxed 5 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...