The superlimit!

Calculus Level 5

Evaluate

100 ( lim x 0 ( 1 ln ( 1 + x ) + 1 ln ( 1 + x 2 x ) ) ) . \left\lfloor 100\left(\lim_{x \rightarrow 0}\left(\frac{1}{\ln(1+ x)} + \frac{1}{\ln ( \sqrt{1+x^2} - x)}\right)\right)\right\rfloor.


The answer is 50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jatin Yadav
Jan 21, 2014

There are numerous ways to solve a limit based problem. My favorite has always been expansion.You always have the power to change any function into algebric function as f ( x ) = f ( 0 ) + f ( 0 ) x + f ( 0 2 ! x 2 + f ( 0 ) 3 ! x 3 + f(x) = f(0) + \frac{f'(0)}x + \frac{f''(0}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + \dots

In this solution, the dots will mean higher powers of x x . We know that 1 + x 2 = 1 + x 2 2 + \sqrt{1+x^2} = 1 + \frac{x^2}{2} + \dots

Hence, 1 + x 2 x = 1 + ( x + x 2 2 + ) \sqrt{1+x^2 } - x = 1 + ( - x + \frac{x^2}{2} + \dots)

Also ln ( 1 + z ) = z z 2 2 + z 3 3 \ln (1+ z) = z -\frac{z^2}{2} + \frac{z^3}{3} \dots

Thus our expression becomes :

lim x 0 ( 1 x x 2 2 + + 1 ( x + x 2 2 + ) ( x + x 2 2 + ) 2 2 ) \displaystyle \lim_{x \to 0} \bigg(\frac{1}{x - \frac{x^2}{2} + \dots} + \frac{1}{ (- x + \frac{x^2}{2} + \dots) - \frac{(- x + \frac{x^2}{2} + \dots)^2}{2} \dots} \bigg)

lim x 0 ( 1 x x 2 2 + + 1 x + 0 x 2 + \displaystyle \lim_{x \to 0} \bigg(\frac{1}{x - \frac{x^2}{2} + \dots} + \frac{1}{-x + 0x^2 + \dots}

= lim x 0 x x 2 2 x + 0 x 2 + x 2 + \displaystyle \lim_{x \to 0} \frac{x - \frac{x^2}{2} - x + 0x^2 + \dots}{-x^2 + \dots}

= 1 2 \boxed{\frac{1}{2}} . Hence, our answer is 50 50

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...