Evaluate I = ∬ Ω ( x 2 + y 2 + z 2 ) − 3 / 2 ( 1 6 x 2 + π 4 y 2 + e 4 z 2 ) − 1 / 2 d S , where Ω denotes ellipsoid 4 x 2 + π 2 y 2 + e 2 z 2 = 1 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I = ∬ Ω ( x 2 + y 2 + z 2 ) − 3 / 2 ( 1 6 x 2 + π 4 y 2 + e 4 z 2 ) − 1 / 2 d S = 2 4 x 2 + π 2 y 2 ≤ 1 ∬ ⎣ ⎢ ⎡ ( x 2 + y 2 + z 2 ) − 3 / 2 ( 1 6 x 2 + π 4 y 2 + e 4 z 2 ) − 1 / 2 ⋅ 1 − 4 x 2 − π 2 y 2 e ( 1 6 x 2 + π 4 y 2 + e 4 z 2 ) 1 / 2 ⎦ ⎥ ⎤ z = e 1 − 4 x 2 − π 2 y 2 d x d y = 2 e 4 x 2 + π 2 y 2 ≤ 1 ∬ [ x 2 + y 2 + e 2 ( 1 − 4 x 2 + π 2 y 2 ) ] − 3 / 2 ( 1 − 4 x 2 + π 2 y 2 ) − 1 / 2 d x d y = 1 6 π e ∫ 0 π / 2 d θ ∫ 0 1 [ e 2 + r 2 ( 4 cos 2 θ + π 2 sin 2 θ − e 2 ) ] − 3 / 2 ( 1 − r 2 ) − 1 / 2 r d r = 8 π e ∫ 0 π / 2 d θ ∫ 0 1 [ e 2 + s ( 4 cos 2 θ + π 2 sin 2 θ − e 2 ) ] − 3 / 2 ( 1 − s ) 1 / 2 d s = e 2 8 π ∫ 0 π / 2 d θ ∫ 0 1 [ 1 + s e 2 4 cos 2 θ + π 2 sin 2 θ − e 2 ] − 3 / 2 ( 1 − s ) − 1 / 2 d s Transform variables to x = 2 r cos θ , y = π r sin θ Transform variables to s = r 2 , d s = 2 r d r Set p = e 2 4 cos 2 θ + π 2 sin 2 θ − e 2 , we have J ( p ) = ∫ 0 1 ( 1 + p s ) − 3 / 2 ( 1 − s ) − 1 / 2 d s = 2 ∫ 0 1 ( 1 + p t 2 ) − 3 / 2 d t , Transform variables to t = ( 1 − s ) 1 / 2 , d t = − 2 1 ( 1 − s ) − 1 / 2 d s where p > − 1 .
When p = 0 , J ( 0 ) = 2 .
When p > 0 , J ( p ) = ( 1 + p ) 3 / 2 2 ∫ 0 1 ( 1 − 1 + p p t 2 ) − 3 / 2 d t = ( 1 + p ) 3 / 2 2 ∫ 0 a r c s i n 1 + p p p 1 + p sec 2 ϕ d ϕ = [ ( 1 + p ) p 2 tan ϕ ] 0 a r c s i n 1 + p p = 1 + p 2 . Transform variables to 1 + p p t = sin ϕ , 1 + p p d t = cos ϕ d ϕ When p < 0 ,
J ( p ) = ( 1 + p ) 3 / 2 2 ∫ 0 1 ( 1 + 1 + p − p t 2 ) − 3 / 2 d t = ( 1 + p ) 3 / 2 2 ∫ 0 a r c t a n 1 + p − p − p 1 + p cos ϕ d ϕ = [ ( 1 + p ) − p 2 sin ϕ ] 0 a r c t a n 1 + p − p = 1 + p 2 . Transform variables to 1 + p − p t = tan ϕ , 1 + p − p d t = sec 2 ϕ d ϕ In a word, J ( p ) = 1 + p 2 , p > − 1 .
Hence I = e 2 8 π ∫ 0 π / 2 J ( e 2 4 cos 2 θ + π 2 sin 2 θ − e 2 ) d θ = e 2 8 π ∫ 0 π / 2 4 cos 2 θ + π 2 sin 2 θ 2 e 2 d θ = 8 π ∫ 0 π / 2 4 cos 2 θ + π 2 sin 2 θ d θ = 8 π ∫ 0 π / 2 4 + π 2 tan 2 θ d tan θ = 8 ∫ 0 π / 2 1 + ( 2 π tan θ ) 2 d ( 2 π tan θ ) = [ 8 arctan ( 2 π tan θ ) ] 0 2 π − = 4 π ≈ 1 2 . 5 7 . Remark: The surface integral
I = ∬ Ω ( x 2 + y 2 + z 2 ) − 3 / 2 ( a 4 x 2 + b 4 y 2 + c 4 z 2 ) − 1 / 2 d S , where Ω denotes ellipsoid a 2 x 2 + b 2 y 2 + c 2 z 2 = 1
has the same answer.
Problem Loading...
Note Loading...
Set Loading...
If we consider the function f ( x , y , z ) = 4 x 2 + π 2 y 2 + e 2 z 2 , so that the surface Ω is the ellipsoid f ( x , y , z ) = 1 , then since x ⋅ ∇ f = 2 f we see that ( 1 6 x 2 + π 4 y 2 + e 4 z 2 ) − 2 1 d S = x ⋅ d S on the surface Ω and hence I = ∬ Ω ∣ x ∣ 3 x ⋅ d S = − ∬ Ω ∇ ϕ ⋅ d S where ϕ ( x ) = ∣ x ∣ 1 . Since ϕ is harmonic except at the origin, we deduce from Green's Theorem that I = − ∬ C u ∇ ϕ ⋅ d S where C u is a sphere centred at the origin with radius u > 0 . But this means that I = ∬ C u u − 3 × u × u 2 d Ω = ∬ C u d Ω = 4 π where d Ω represents integration over solid angle. Thus the integral is equal to 4 π