Surface Integral

Calculus Level 5

Evaluate I = Ω ( x 2 + y 2 + z 2 ) 3 / 2 ( x 2 16 + y 2 π 4 + z 2 e 4 ) 1 / 2 d S , I=\iint_\Omega\left(x^2+y^2+z^2\right)^{-3/2}\left(\frac{x^2}{16}+\frac{y^2}{\pi^4}+\frac{z^2}{e^4}\right)^{-1/2}dS, where Ω \Omega denotes ellipsoid x 2 4 + y 2 π 2 + z 2 e 2 = 1 \frac{x^2}{4}+\frac{y^2}{\pi^2}+\frac{z^2}{e^2}=1 .


The answer is 12.57.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Mar 7, 2018

If we consider the function f ( x , y , z ) = x 2 4 + y 2 π 2 + z 2 e 2 f(x,y,z) = \tfrac{x^2}{4} + \tfrac{y^2}{\pi^2} + \tfrac{z^2}{e^2} , so that the surface Ω \Omega is the ellipsoid f ( x , y , z ) = 1 f(x,y,z) = 1 , then since x f = 2 f \mathbf{x} \cdot \nabla\,f \; = \; 2f we see that ( x 2 16 + y 2 π 4 + z 2 e 4 ) 1 2 d S = x d S \left(\tfrac{x^2}{16} + \tfrac{y^2}{\pi^4} + \tfrac{z^2}{e^4}\right)^{-\frac12}\,dS \; = \; \mathbf{x} \cdot d\mathbf{S} on the surface Ω \Omega and hence I = Ω x d S x 3 = Ω ϕ d S I \; = \; \iint_{\Omega} \frac{\mathbf{x} \cdot d\mathbf{S}}{|\mathbf{x}|^3} \; = \; -\iint_\Omega \nabla \phi\,\cdot d\mathbf{S} where ϕ ( x ) = 1 x \phi(\mathbf{x}) = \tfrac{1}{|\mathbf{x}|} . Since ϕ \phi is harmonic except at the origin, we deduce from Green's Theorem that I = C u ϕ d S I \; = \; -\iint_{C_u} \nabla \phi \cdot d\mathbf{S} where C u C_u is a sphere centred at the origin with radius u > 0 u > 0 . But this means that I = C u u 3 × u × u 2 d Ω = C u d Ω = 4 π I \; = \; \iint_{C_u} u^{-3} \times u \times u^2d\Omega \; = \; \iint_{C_u}\,d\Omega \; = \; 4\pi where d Ω d\Omega represents integration over solid angle. Thus the integral is equal to 4 π \boxed{4\pi}

Brian Lie
Mar 6, 2018

I = Ω ( x 2 + y 2 + z 2 ) 3 / 2 ( x 2 16 + y 2 π 4 + z 2 e 4 ) 1 / 2 d S = 2 x 2 4 + y 2 π 2 1 [ ( x 2 + y 2 + z 2 ) 3 / 2 ( x 2 16 + y 2 π 4 + z 2 e 4 ) 1 / 2 e ( x 2 16 + y 2 π 4 + z 2 e 4 ) 1 / 2 1 x 2 4 y 2 π 2 ] z = e 1 x 2 4 y 2 π 2 d x d y = 2 e x 2 4 + y 2 π 2 1 [ x 2 + y 2 + e 2 ( 1 x 2 4 + y 2 π 2 ) ] 3 / 2 ( 1 x 2 4 + y 2 π 2 ) 1 / 2 d x d y Transform variables to x = 2 r cos θ , y = π r sin θ = 16 π e 0 π / 2 d θ 0 1 [ e 2 + r 2 ( 4 cos 2 θ + π 2 sin 2 θ e 2 ) ] 3 / 2 ( 1 r 2 ) 1 / 2 r d r Transform variables to s = r 2 , d s = 2 r d r = 8 π e 0 π / 2 d θ 0 1 [ e 2 + s ( 4 cos 2 θ + π 2 sin 2 θ e 2 ) ] 3 / 2 ( 1 s ) 1 / 2 d s = 8 π e 2 0 π / 2 d θ 0 1 [ 1 + s 4 cos 2 θ + π 2 sin 2 θ e 2 e 2 ] 3 / 2 ( 1 s ) 1 / 2 d s \begin{aligned} I&=\iint_\Omega\left(x^2+y^2+z^2\right)^{-3/2}\left(\frac{x^2}{16}+\frac{y^2}{\pi^4}+\frac{z^2}{e^4}\right)^{-1/2}dS\\ &=2\iint\limits_{\frac{x^2}{4}+\frac{y^2}{\pi^2}\le 1}\left[\left(x^2+y^2+z^2\right)^{-3/2}\left(\frac{x^2}{16}+\frac{y^2}{\pi^4}+\frac{z^2}{e^4}\right)^{-1/2}·\frac{e\left(\frac{x^2}{16}+\frac{y^2}{\pi^4}+\frac{z^2}{e^4}\right)^{1/2}}{\sqrt{1-\frac{x^2}{4}-\frac{y^2}{\pi^2}}}\right]_{z=e\sqrt{1-\frac{x^2}{4}-\frac{y^2}{\pi^2}}}dxdy\\ &=2e\iint\limits_{\frac{x^2}{4}+\frac{y^2}{\pi^2}\le 1}\left[x^2+y^2+e^2\left(1-\frac{x^2}{4}+\frac{y^2}{\pi^2}\right)\right]^{-3/2}\left(1-\frac{x^2}{4}+\frac{y^2}{\pi^2}\right)^{-1/2}dxdy&\color{#3D99F6}\text{Transform variables to }x=2r\cos\theta,y=\pi r\sin\theta\\ &=16\pi e\int_0^{\pi/2}d\theta\int_0^1[e^2+r^2(4\cos^2\theta+\pi^2\sin^2\theta-e^2)]^{-3/2}(1-r^2)^{-1/2}rdr&\color{#3D99F6}\text{Transform variables to }s=r^2,\ ds=2rdr\\ &=8\pi e\int_0^{\pi/2}d\theta\int_0^1[e^2+s(4\cos^2\theta+\pi^2\sin^2\theta-e^2)]^{-3/2}(1-s)^{1/2}ds\\ &=\frac{8\pi}{e^2}\int_0^{\pi/2}d\theta\int_0^1\left[1+s\frac{4\cos^2\theta+\pi^2\sin^2\theta-e^2}{e^2}\right]^{-3/2}(1-s)^{-1/2}ds \end{aligned} Set p = 4 cos 2 θ + π 2 sin 2 θ e 2 e 2 \Large p=\frac{4\cos^2\theta+\pi^2\sin^2\theta-e^2}{e^2} , we have J ( p ) = 0 1 ( 1 + p s ) 3 / 2 ( 1 s ) 1 / 2 d s Transform variables to t = ( 1 s ) 1 / 2 , d t = 1 2 ( 1 s ) 1 / 2 d s = 2 0 1 ( 1 + p t 2 ) 3 / 2 d t , \begin{aligned} J(p)&=\int_0^1(1+ps)^{-3/2}(1-s)^{-1/2}ds&\color{#3D99F6}\text{Transform variables to }t=(1-s)^{1/2},\ dt=-\frac12(1-s)^{-1/2}ds\\ &=2\int_0^1(1+pt^2)^{-3/2}dt, \end{aligned} where p > 1 p>-1 .

When p = 0 p=0 , J ( 0 ) = 2 J(0)=2 .

When p > 0 p>0 , J ( p ) = 2 ( 1 + p ) 3 / 2 0 1 ( 1 p 1 + p t 2 ) 3 / 2 d t Transform variables to p 1 + p t = sin ϕ , p 1 + p d t = cos ϕ d ϕ = 2 ( 1 + p ) 3 / 2 0 a r c s i n p 1 + p 1 + p p sec 2 ϕ d ϕ = [ 2 ( 1 + p ) p tan ϕ ] 0 a r c s i n p 1 + p = 2 1 + p . \begin{aligned} J(p)&=\frac{2}{(1+p)^{3/2}}\int_0^1\left(1-\frac{p}{1+p}t^2\right)^{-3/2}dt&\color{#3D99F6}\text{Transform variables to }\sqrt\frac{p}{1+p}t=\sin\phi,\ \sqrt\frac{p}{1+p}dt=\cos\phi d\phi\\ &=\frac{2}{(1+p)^{3/2}}\int_0^{arcsin\sqrt\frac{p}{1+p}}\sqrt\frac{1+p}{p}\sec^2\phi d\phi\\ &=\left[\frac{2}{(1+p)\sqrt p}\tan\phi\right]_0^{arcsin\sqrt\frac{p}{1+p}}\\ &=\frac{2}{1+p}. \end{aligned} When p < 0 p<0 ,

J ( p ) = 2 ( 1 + p ) 3 / 2 0 1 ( 1 + p 1 + p t 2 ) 3 / 2 d t Transform variables to p 1 + p t = tan ϕ , p 1 + p d t = sec 2 ϕ d ϕ = 2 ( 1 + p ) 3 / 2 0 a r c t a n p 1 + p 1 + p p cos ϕ d ϕ = [ 2 ( 1 + p ) p sin ϕ ] 0 a r c t a n p 1 + p = 2 1 + p . \begin{aligned} J(p)&=\frac{2}{(1+p)^{3/2}}\int_0^1\left(1+\frac{-p}{1+p}t^2\right)^{-3/2}dt&\color{#3D99F6}\text{Transform variables to }\sqrt\frac{-p}{1+p}t=\tan\phi,\ \sqrt\frac{-p}{1+p}dt=\sec^2\phi d\phi\\ &=\frac{2}{(1+p)^{3/2}}\int_0^{arctan\sqrt\frac{-p}{1+p}}\sqrt\frac{1+p}{-p}\cos\phi d\phi\\ &=\left[\frac{2}{(1+p)\sqrt {-p}}\sin\phi\right]_0^{arctan\sqrt\frac{-p}{1+p}}\\ &=\frac{2}{1+p}. \end{aligned} In a word, J ( p ) = 2 1 + p J(p)=\frac{2}{1+p} , p > 1 p>-1 .

Hence I = 8 π e 2 0 π / 2 J ( 4 cos 2 θ + π 2 sin 2 θ e 2 e 2 ) d θ = 8 π e 2 0 π / 2 2 e 2 4 cos 2 θ + π 2 sin 2 θ d θ = 8 π 0 π / 2 d θ 4 cos 2 θ + π 2 sin 2 θ = 8 π 0 π / 2 d tan θ 4 + π 2 tan 2 θ = 8 0 π / 2 d ( π 2 tan θ ) 1 + ( π 2 tan θ ) 2 = [ 8 arctan ( π 2 tan θ ) ] 0 π 2 = 4 π 12.57 . \begin{aligned} I&=\frac{8\pi}{e^2}\int_0^{\pi/2}J\left(\frac{4\cos^2\theta+\pi^2\sin^2\theta-e^2}{e^2}\right)d\theta\\ &=\frac{8\pi}{e^2}\int_0^{\pi/2}\frac{2e^2}{4\cos^2\theta+\pi^2\sin^2\theta}d\theta\\ &=8\pi\int_0^{\pi/2}\frac{d\theta}{4\cos^2\theta+\pi^2\sin^2\theta}\\ &=8\pi\int_0^{\pi/2}\frac{d\tan\theta}{4+\pi^2\tan^2\theta}\\ &=8\int_0^{\pi/2}\frac{d\left(\frac{\pi}{2}\tan\theta\right)}{1+\left(\frac{\pi}{2}\tan\theta\right)^2}\\ &=\left[8\arctan\left(\frac{\pi}{2}\tan\theta\right)\right]_0^{\frac{\pi}{2}-}\\ &=4\pi\approx\boxed{12.57}. \end{aligned} Remark: The surface integral

I = Ω ( x 2 + y 2 + z 2 ) 3 / 2 ( x 2 a 4 + y 2 b 4 + z 2 c 4 ) 1 / 2 d S , where Ω denotes ellipsoid x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 I=\displaystyle\iint_\Omega\left(x^2+y^2+z^2\right)^{-3/2}\left(\frac{x^2}{a^4}+\frac{y^2}{b^4}+\frac{z^2}{c^4}\right)^{-1/2}dS \text{, where }\Omega\text{ denotes ellipsoid }\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1

has the same answer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...