The Surface of Revolution

Calculus Level 3

The area of the surface obtained by rotating the curve y = 1 3 x 3 + 2 x y=\dfrac 13x^3+2x ( 0 x 1 ) (0 \le x \le 1) about the line y = 4 3 x y=\dfrac 43 x is A B 3 π , \dfrac {\sqrt A-\sqrt B}3 \pi, where A A and B B are positive integers.

Find A + B . A+B.


The answer is 45.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

If you rotate every point of the curve and the line in the xy-plane clockwise through ϕ = arctan ( 4 3 ) \phi=\arctan\left(\frac{4}{3}\right) about the origin of the coordinate system, the line is on the x-axis and the curve is described by x ( x ( x ) , y ( x ) ) , 0 x 1 x\to\left(x'(x),y'(x)\right)~~~,~0\leq x\leq 1 , where ( u = 4 3 u=\frac 43 )

x = x cos ϕ + y sin ϕ = 1 1 + u 2 ( x + y u ) , sin ( arctan u ) = u 1 + u 2 , cos ( arctan u ) = 1 1 + u 2 = 3 5 ( 11 3 x + 4 9 x 3 ) = 11 5 x + 4 15 x 3 \begin{aligned} x'&=x\cos{\phi}+y\sin{\phi}=\frac{1}{\sqrt{1+u^2}}(x+yu)~~~~~~~~~~~~~~~~~~~~~~,~{\sin\left(\arctan{u}\right)=\frac{u}{\sqrt{1+u^2}}~~,~~\cos\left(\arctan{u}\right)=\frac{1}{\sqrt{1+u^2}}}\\ &=\frac 35\left(\frac{11}{3}x+\frac 49x^3\right)=\frac{11}{5}x+\frac{4}{15}x^3\end{aligned}

and

y = x sin ϕ + y cos ϕ = 3 5 ( 4 3 x + y ) = 3 5 ( 2 3 x + 1 3 x 3 ) = 2 5 x + 1 5 x 3 \begin{aligned} y'&=-x\sin{\phi}+y\cos{\phi}=\frac 35\left(-\frac 43x+y\right)\\ &=\frac 35\left(\frac 23x+\frac 13x^3\right)=\frac 25x+\frac 15x^3 \end{aligned}

~\\ ~\\ ~

This curve is now rotating about the x-axis and the surface element is

d A = 2 π x x 2 + y x 2 y d x = 2 π 5 + 4 x 2 + x 4 ( 2 5 x + 1 5 x 3 ) d x = 2 π 20 5 + 4 x 2 + x 4 ( 8 x + 4 x 3 ) d x = π 10 5 + 4 x 2 + x 4 [ d d x ( 5 + 4 x 2 + x 4 ) ] d x \begin{aligned} \mathrm dA&=2\pi\sqrt{x_x'^2+y_x'^2}\cdot y'\mathrm dx=2\pi\sqrt{5+4x^2+x^4}\left(\frac 25x+\frac 15x^3\right)\mathrm dx\\ &=\frac{2\pi}{20}\sqrt{5+4x^2+x^4}\left(8x+4x^3\right)\mathrm dx\\ &=\frac{\pi}{10}\sqrt{5+4x^2+x^4}\left[\frac{\mathrm d}{\mathrm dx}\left(5+4x^2+x^4\right)\right]\mathrm dx \end{aligned}

.

A = d A = 0 1 π 10 5 + 4 x 2 + x 4 [ d d x ( 5 + 4 x 2 + x 4 ) ] d x \ = [ 2 3 π 10 5 + 4 x 2 + x 4 3 2 ] 0 1 = π 3 5 ( 10 10 5 5 ) = 40 5 3 π \begin{aligned} A&=\int\mathrm dA=\int\limits_0^1\frac{\pi}{10}\sqrt{5+4x^2+x^4}\left[\frac{\mathrm d}{\mathrm dx}\left(5+4x^2+x^4\right)\right]\mathrm dx\\\ &=\left[\frac 23\frac{\pi}{10}\sqrt{5+4x^2+x^4}^{\frac 32}\right]^1_0=\frac{\pi}{3\cdot 5}\left(10\sqrt{10}-5\sqrt{5}\right)\\ &=\frac{\sqrt{40}-\sqrt{5}}{3}\pi \end{aligned}

So A + B = 45 A+B=\boxed{45}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...