The third expression

Algebra Level 3

a , b , c a,b,c are 3 real numbers such that a b c a\neq b\neq c and a 2 ( b + c ) = b 2 ( c + a ) = 2017 { a }^{ 2 }\left( b+c \right) ={ b }^{ 2 }\left( c+a \right) =2017 .

What is the value of M = c 2 ( a + b ) M={ c }^{ 2 }\left( a+b \right) ?


The answer is 2017.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Linkin Duck
Mar 28, 2017

From a 2 ( b + c ) = b 2 ( c + a ) { a }^{ 2 }\left( b+c \right) ={ b }^{ 2 }\left( c+a \right)

( a b ) ( a b + b c + c a ) = 0 a b + b c + c a = 0 ( a b ) ( b c ) ( a b + b c + c a ) = 0 b 2 a + b 2 c b c 2 a c 2 = 0 \Longrightarrow \left( a-b \right) \left( ab+bc+ca \right) =0\\ \Longrightarrow ab+bc+ca=0\quad \left( a\neq b \right) \\ \Longrightarrow \left( b-c \right) \left( ab+bc+ca \right) =0\\ \Longrightarrow { b }^{ 2 }a+{ b }^{ 2 }c-b{ c }^{ 2 }-a{ c }^{ 2 }=0

So, M = c 2 ( a + b ) = b 2 ( c + a ) = 2017. M={ c }^{ 2 }\left( a+b \right) ={ b }^{ 2 }\left( c+a \right) =2017.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...