The first try.

Find n n such that

C 8 n 3 C 8 n 3 + + ( 8 n 3 ) C 8 n 8 n 3 ( 8 n 1 ) C 8 n 8 n 1 = n 10 \large \text{C}_{8n} - 3\text{C}^{3}_{8n} + \cdots + (8n - 3)\text{C}^{8n - 3}_{8n} - (8n - 1)\text{C}^{8n - 1}_{8n} = n^{10}


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Joseph Newton
Nov 29, 2018

Note that the question uses an unusual notation for combinations of k from a set of n, C n k \text{C}_n^k (as discussed in this wikipedia article ). For this solution, I will use the more common notation, ( n k ) n\choose k .

Consider the binomial expansion of ( 1 + x ) 8 n (1+x)^{8n} : ( 1 + x ) 8 n = ( 8 n 0 ) + ( 8 n 1 ) x + ( 8 n 2 ) x 2 + ( 8 n 3 ) x 3 + + ( 8 n 8 n ) x 8 n (1+x)^{8n}={8n\choose0}+{8n\choose1}x+{8n\choose2}x^2+{8n\choose3}x^3+\dots+{8n\choose8n}x^{8n} Differentiating both sides: 8 n ( 1 + x ) 8 n 1 = ( 8 n 1 ) + 2 ( 8 n 2 ) x + 3 ( 8 n 3 ) x 2 + 4 ( 8 n 4 ) x 3 + + 8 n ( 8 n 8 n ) x 8 n 1 8n(1+x)^{8n-1}={8n\choose1}+2{8n\choose2}x+3{8n\choose3}x^2+4{8n\choose4}x^3+\dots+8n{8n\choose8n}x^{8n-1} Now, let x = i x=i : L H S = 8 n ( 1 + i ) 8 n 1 = 8 n ( 2 ) 8 n 1 ( 1 2 + i 2 ) 8 n 1 = 8 2 n ( 2 ) 8 n 2 [ cos ( π 4 ) + i sin ( π 4 ) ] 8 n 1 = 2 3 2 n × 2 4 n 1 [ cos ( π 4 ( 8 n 1 ) ) + i sin ( π 4 ( 8 n 1 ) ) ] by de Moivre’s theorem = 2 n × 2 4 n + 2 [ cos ( 2 π n π 4 ) + i sin ( 2 π n π 4 ) ] = 2 n × 2 4 n + 2 [ cos ( π 4 ) + i sin ( π 4 ) ] = 2 n × 2 4 n + 2 ( 1 2 i 2 ) = 2 4 n + 2 ( 1 i ) n \begin{aligned}LHS&=8n(1+i)^{8n-1}\\ &=8n(\sqrt2)^{8n-1}\left(\frac1{\sqrt2}+\frac i{\sqrt2}\right)^{8n-1}\\ &=8\sqrt2n(\sqrt2)^{8n-2}\left[\cos\left(\frac\pi4\right)+i\sin\left(\frac\pi4\right)\right]^{8n-1}\\ &=2^3\sqrt2n\times2^{4n-1}\left[\cos\left(\frac\pi4(8n-1)\right)+i\sin\left(\frac\pi4(8n-1)\right)\right]&\text{by de Moivre's theorem}\\ &=\sqrt2n\times2^{4n+2}\left[\cos\left(2\pi n-\frac\pi4\right)+i\sin\left(2\pi n-\frac\pi4\right)\right]\\ &=\sqrt2n\times2^{4n+2}\left[\cos\left(-\frac\pi4\right)+i\sin\left(-\frac\pi4\right)\right]\\ &=\sqrt2n\times2^{4n+2}\left(\frac1{\sqrt2}-\frac i{\sqrt2}\right)\\ &=2^{4n+2}(1-i)n\end{aligned} R H S = ( 8 n 1 ) + 2 ( 8 n 2 ) i + 3 ( 8 n 3 ) i 2 + 4 ( 8 n 4 ) i 3 + 5 ( 8 n 5 ) i 4 + + 8 n ( 8 n 8 n ) i 8 n 1 = ( 8 n 1 ) + 2 ( 8 n 2 ) i 3 ( 8 n 3 ) 4 ( 8 n 4 ) i + 5 ( 8 n 5 ) + + 8 n ( 8 n 8 n ) i 8 n 1 = [ ( 8 n 1 ) 3 ( 8 n 3 ) + 5 ( 8 n 5 ) + ( 8 n 1 ) ( 8 n 8 n 1 ) ] + [ 2 ( 8 n 2 ) 4 ( 8 n 4 ) + 6 ( 8 n 6 ) + 8 n ( 8 n 8 n ) ] i \begin{aligned}RHS&={8n\choose1}+2{8n\choose2}i+3{8n\choose3}i^2+4{8n\choose4}i^3+5{8n\choose5}i^4+\dots+8n{8n\choose8n}i^{8n-1}\\ &={8n\choose1}+2{8n\choose2}i-3{8n\choose3}-4{8n\choose4}i+5{8n\choose5}+\dots+8n{8n\choose8n}i^{8n-1}\\ &=\left[{8n\choose1}-3{8n\choose3}+5{8n\choose5}+\dots-(8n-1){8n\choose8n-1}\right]+\left[2{8n\choose2}-4{8n\choose4}+6{8n\choose6}+\dots-8n{8n\choose8n}\right]i\end{aligned} Equating real parts: 2 4 n + 2 n = ( 8 n 1 ) 3 ( 8 n 3 ) + 5 ( 8 n 5 ) + ( 8 n 1 ) ( 8 n 8 n 1 ) 2 4 n + 2 n = n 10 4 2 n + 1 = n 9 \begin{aligned}2^{4n+2}n&={8n\choose1}-3{8n\choose3}+5{8n\choose5}+\dots-(8n-1){8n\choose8n-1}\\ \therefore2^{4n+2}n&=n^{10}\\ \therefore4^{2n+1}&=n^9\end{aligned} By inspection, this is true when n = 4 \boxed{n=4}

That is not my intended solution. I never thought that I would let x = i x = i .

Thành Đạt Lê - 2 years, 6 months ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...