The trend of huge number (3)

201 6 1 2017 + 201 6 2 2017 + 201 6 3 2017 + + 201 6 2016 2017 \large 2016^{{1}^{2017}}+2016^{{2}^{2017}}+2016^{{3}^{2017}}+\cdots+2016^{{2016}^{2017}}

Find the remainder when the expression above is divided by 2017.

1 2016 0 1008 2015

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tommy Li
Jul 2, 2016

Relevant wiki: Modular Arithmetic - Exponentiation

Simple solution :

201 6 1 2017 + 201 6 2 2017 + 201 6 3 2017 + + 201 6 2016 2017 x ( m o d 2017 ) 2016^{{1}^{2017}}+2016^{{2}^{2017}}+2016^{{3}^{2017}}+\dots+2016^{{2016}^{2017}}\equiv x \pmod{2017}

( 1 ) 1 2017 + ( 1 ) 2 2017 + ( 1 ) 3 2017 + + ( 1 ) 2016 2017 x ( m o d 2017 ) (-1)^{{1}^{2017}}+(-1)^{{2}^{2017}}+(-1)^{{3}^{2017}}+\dots+(-1)^{{2016}^{2017}}\equiv x \pmod{2017}

( 1 ) + 1 + ( 1 ) + + 1 ( m o d 2017 ) (-1)+1+(-1)+\dots+1 \equiv \pmod{2017}

x 0 ( m o d 2017 ) x \equiv 0 \pmod{2017}


Complicated solution :

201 6 1 2017 + 201 6 2 2017 + 201 6 3 2017 + + 201 6 2016 2017 x ( m o d 2017 ) 2016^{{1}^{2017}}+2016^{{2}^{2017}}+2016^{{3}^{2017}}+\dots+2016^{{2016}^{2017}}\equiv x \pmod{2017}

201 6 1 + 201 6 2 + 201 6 3 + + 201 6 2016 x ( m o d 2017 ) 2016^{1}+2016^{2}+2016^{3}+\dots+2016^{2016}\equiv x \pmod{2017} (By Fermat's little theorem)

2016 ( 201 6 2016 1 ) 2016 1 x ( m o d 2017 ) \frac{2016(2016^{2016}-1)}{2016-1}\equiv x \pmod{2017}

( 1 ) ( ( 1 ) 2016 1 ) 2015 x ( m o d 2017 ) \frac{(-1)((-1)^{2016}-1)}{2015}\equiv x \pmod{2017}

( 1 ) ( 1 1 ) 2015 x ( m o d 2017 ) \frac{(-1)(1-1)}{2015}\equiv x \pmod{2017}

x 0 ( m o d 2017 ) x \equiv 0 \pmod{2017}

Nice Solution :) , +1

Novril Razenda - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...