1 2 0 1 7 2 0 1 7 2 0 1 7 + 2 2 0 1 7 2 0 1 7 2 0 1 7 + 3 2 0 1 7 2 0 1 7 2 0 1 7 + ⋯ + 2 0 1 6 2 0 1 7 2 0 1 7 2 0 1 7
Find the remainder when the expression above is divided by 2017.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Relevant wiki: Fermat's Little Theorem
1 2 0 1 7 2 0 1 7 2 0 1 7 + 2 2 0 1 7 2 0 1 7 2 0 1 7 + 3 2 0 1 7 2 0 1 7 2 0 1 7 + ⋯ + 2 0 1 6 2 0 1 7 2 0 1 7 2 0 1 7 ≡ x ( m o d 2 0 1 7 )
1 + 2 + 3 + ⋯ + 2 0 1 6 ≡ x ( m o d 2 0 1 7 ) (By Fermat's little theorem)
2 ( 2 0 1 6 ) ( 2 0 1 6 + 1 ) ≡ x ( m o d 2 0 1 7 )
( 1 0 0 8 ) ( 2 0 1 7 ) ≡ x ( m o d 2 0 1 7 )
x ≡ 0 ( m o d 2 0 1 7 )
You must know 2017 is prime first.
Problem Loading...
Note Loading...
Set Loading...
Let 2 0 1 7 2 0 1 7 2 0 1 7 = n . Then: 1 n + 2 n + 3 n + ⋯ + 2 0 1 6 n ( m o d 2 0 1 7 ) ( 1 n + 2 0 1 6 n ) + ( 2 n + 2 0 1 5 n ) + ( 3 n + 2 0 1 4 n ) + ⋯ + ( 1 0 0 8 n + 1 0 0 9 n ) ( m o d 2 0 1 7 ) ( 1 n + ( − 1 ) n ) + ( 2 n + ( − 2 ) n ) + ( 3 n + ( − 3 ) n ) + ⋯ + ( 1 0 0 8 n + ( − 1 0 0 8 ) n ) ( m o d 2 0 1 7 ) n is odd,so: ( − a ) n = − a n ⟹ a n + ( − a ) n = 0 ⟹ j = 1 ∑ 1 0 0 8 ( j n + ( − j ) n ) = j = 1 ∑ 1 0 0 8 0 = 0