The trend of huge number

201 6 2017 2018 2019 2020 20162016 ? ( m o d 100 ) \huge 2016^{{2017}^{{2018}^{{2019}^{{2020}^{20162016}}}}} \equiv \ ? \pmod {100}

36 56 96 76 16

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Tommy Li
Jun 16, 2016

{ 2016 16 (mod 100) ( 5 n + 1 ) 201 6 2 56 (mod 100) ( 5 n + 2 ) 201 6 3 96 (mod 100) ( 5 n + 3 ) 201 6 4 36 (mod 100) ( 5 n + 4 ) 201 6 5 76 (mod 100) ( 5 n ) \begin{cases} 2016 & \equiv 16 \text{(mod 100)} (5n+1) \\ 2016^{2} & \equiv 56 \text{(mod 100)} (5n+2) \\ 2016^{3} & \equiv 96 \text{(mod 100)} (5n+3) \\ 2016^{4} & \equiv 36 \text{(mod 100)} (5n+4) \\ 2016^{5} & \equiv 76 \text{(mod 100)} (5n) \\ \end{cases}

{ 2 5 2 (mod 5) ( 4 n + 1 ) 2 6 4 (mod 5) ( 4 n + 2 ) 2 7 3 (mod 5) ( 4 n + 3 ) 2 8 1 (mod 5) ( 4 n ) \begin{cases} 2^{5} & \equiv 2 \text{(mod 5)} (4n+1) \\ 2^{6} & \equiv 4 \text{(mod 5)} (4n+2) \\ 2^{7} & \equiv 3 \text{(mod 5)} (4n+3) \\ 2^{8} & \equiv 1 \text{(mod 5)} (4n) \end{cases}

{ 4 3 4 (mod 5) ( 2 n + 1 ) 4 4 1 (mod 5) ( 2 n ) \begin{cases} 4^{3} & \equiv 4 \text{(mod 5)} (2n+1) \\ 4^{4} & \equiv 1 \text{(mod 5)} (2n) \end{cases}

2017 2 (mod 5) 2017 \equiv 2 \text{(mod 5)}

2017 2018 2 2018 (mod 5) {2017}^{2018} \equiv 2^{2018} \text{(mod 5)}

2017 2018 4 (mod 5) {2017}^{2018} \equiv 4 \text{(mod 5)}

2017 2018 2019 4 2019 (mod 5) {2017}^{{2018}^{2019}} \equiv 4^{2019} \text{(mod 5)}

2017 2018 2019 4 (mod 5) {2017}^{{2018}^{2019}} \equiv 4 \text{(mod 5)}

2017 2018 2019 2020 4 2020 (mod 5) {2017}^{{2018}^{{2019}^{2020}}} \equiv 4^{2020} \text{(mod 5)}

2017 2018 2019 2020 1 (mod 5) {2017}^{{2018}^{{2019}^{2020}}} \equiv 1 \text{(mod 5)}

2017 2018 2019 2020 20162016 1 20162016 (mod 5) {2017}^{{2018}^{{2019}^{{2020}^{20162016}}}} \equiv 1^{20162016} \text{(mod 5)}

2017 2018 2019 2020 20162016 1 (mod 5) {2017}^{{2018}^{{2019}^{{2020}^{20162016}}}} \equiv 1 \text{(mod 5)}

201 6 2017 2018 2019 2020 20162016 = 201 6 5 m + 1 2016^{{2017}^{{2018}^{{2019}^{{2020}^{20162016}}}}}=2016^{5m+1} ,where m m is a positive integer.

201 6 2017 2018 2019 2020 20162016 16 (mod 100) \Rightarrow2016^{{2017}^{{2018}^{{2019}^{{2020}^{20162016}}}}} \equiv 16 \text{(mod 100)}

Zyberg Nee
Jun 27, 2016

By Chinese remainder theorem ( m o d 100 ) \pmod{100} is the same as ( m o d 25 ) \pmod{25} and ( m o d 4 ) \pmod{4} .


Since 2016 = 4 504 2016 = 4 * 504 we know that the number is 0 ( m o d 4 ) \equiv 0 \pmod{4}


( m o d 25 ) \pmod{25}

25 25 and 16 16 are coprime, so we can use Euler's totient function ϕ 25 = 20 \phi{25}=20 .

20 20 and 17 17 are coprime, so, again, we can use Euler's totient function ϕ 20 = 2 3 \phi{20}=2^3 .

201 8 201 9 202 0 20162016 2 201 9 202 0 20162016 0 ( m o d 2 3 ) 2018^{2019^{2020^{20162016}}} \equiv 2^{2019^{2020^{20162016}}} \equiv 0 \pmod{2^3} .

Now we have much simpler expression:

1 6 1 7 0 = 16 ( m o d 25 ) 16^{17^{0}} =16 \pmod{25}


Since x 0 ( m o d 4 ) x \equiv 0 \pmod{4} and x 16 ( m o d 25 ) x \equiv 16\pmod{25} we notice that 16 \boxed{16} is the answer.

Ankit Kumar Jain
Jun 25, 2016

I used the fact that ( even no. ) 20 n 76 ( m o d 100 ) (\text{even no.})^{20n}\equiv76\pmod{100} where n \text{n} is any natural number and the number is not an even multiple of 5 5 .

So we need to find 201 7 201 8 201 9 202 0 20162016 ( m o d 20 ) 2017^{2018^{2019^{2020^{20162016}}}}\pmod{20}


201 7 201 8 201 9 202 0 20162016 1 7 201 8 201 9 202 0 20162016 ( 3 ) 201 8 201 9 202 0 20162016 3 201 8 201 9 202 0 20162016 ( m o d 20 ) 2017^{2018^{2019^{2020^{20162016}}}}\equiv17^{2018^{2019^{2020^{20162016}}}}\equiv(-3)^{2018^{2019^{2020^{20162016}}}}\equiv3^{2018^{2019^{2020^{20162016}}}}\pmod{20}

Now, we know that 3 4 1 ( m o d 20 ) 3^{4}\equiv1\pmod{20} and 201 8 a 2018^{a} where a > 2 \boxed{a > 2} is divisible by 4 4 .

Therefore,

3 201 8 201 9 202 0 20162016 3 4 k ( 3 4 ) k 1 k 1 ( m o d 20 ) 3^{2018^{2019^{2020^{20162016}}}}\equiv3^{4k}\equiv(3^{4})^{k}\equiv1^{k}\equiv1\pmod{20}

So, 201 7 201 8 201 9 202 0 20162016 1 ( m o d 20 ) 2017^{2018^{2019^{2020^{20162016}}}}\equiv1\pmod{20} .

Hence, 201 6 201 7 201 8 201 9 202 0 20162016 201 6 20 n + 1 ( 201 6 20 ) n × 2016 7 6 n × 2016 76 × 16 16 ( m o d 100 ) 2016^{2017^{2018^{2019^{2020^{20162016}}}}}\equiv2016^{20n + 1}\equiv(2016^{20})^{n}\times2016\equiv76^{n}\times2016\equiv76\times16\equiv{16}\pmod{100} ...because 76 76 raised to the power any natural number gives 76 76 as the last two digits.

So our answer becomes 16 \boxed{16} .


N O T E : \underline{NOTE :}

By Euler's Theorem - n ϕ ( 25 ) 1 ( m o d 25 ) n^{\phi(25)}\equiv1\pmod{25} where n \text{n} is co - prime to 25 25 .

So ( even no. ) 20 1 ( m o d 25 ) (\text{even no.})^{20}\equiv1\pmod{25} . Hence possible last two digits are 01 , 26 , 51 , 76 01 , 26 , 51 , 76 .............. ϕ ( 25 ) = 20 \boxed{\phi(25) = 20}

But 01 01 and 51 51 are not possible since even number raised to the power anything is even.

26 26 is also not possible because even number raised to the power 20 20 is obviously divisible by 4 4 .

Hence possible last two digits is 76 \boxed{76} only.

Moderator note:

Good approach iteratively using Euler's Theorem.

Thanks you very much! Your solution shows your great knowledge.

Tommy Li - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...