2 0 1 6 ! 2 0 1 7 ! 2 0 1 8 ! × 2 0 1 5 ! 2 0 1 6 ! 2 0 1 7 ! ≡ ? ( m o d 2 0 1 7 )
Notation : ! denotes the factorial notation. For example, 8 ! = 1 × 2 × 3 × ⋯ × 8 .
Hints :You may find Wilson's theorem useful.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
In general, we have ( ( p − 1 ) ! ) m × ( ( p − 2 ) ! ) n ≡ ( − 1 ) m ( m o d p ) for all odd primes p and non-negative integers m , n . This follows from Wilson's Theorem and it's extension that ( p − 2 ) ! ≡ 1 ( m o d p ) for all odd primes p .
Problem Loading...
Note Loading...
Set Loading...
2 0 1 7 is a prime
( 2 0 1 7 − 1 ) ! ≡ − 1 ( m o d 2 0 1 7 )
2 0 1 6 ! ≡ − 1 ( m o d 2 0 1 7 )
2 0 1 6 ! 2 0 1 7 ! ≡ ( − 1 ) 2 0 1 7 ! ( m o d 2 0 1 7 )
2 0 1 6 ! 2 0 1 7 ! ≡ ( − 1 ) 2 n ( m o d 2 0 1 7 ) , where n is a positive integer.
2 0 1 6 ! 2 0 1 7 ! ≡ 1 ( m o d 2 0 1 7 )
2 0 1 6 ! 2 0 1 7 ! 2 0 1 8 ! ≡ 1 ( m o d 2 0 1 7 )
2 0 1 6 ! ≡ − 1 ( m o d 2 0 1 7 )
2 0 1 6 ! ≡ 2 0 1 6 ( m o d 2 0 1 7 )
2 0 1 6 2 0 1 6 ! ≡ 2 0 1 6 2 0 1 6 ( m o d 2 0 1 7 )
2 0 1 5 ! ≡ 1 ( m o d 2 0 1 7 )
2 0 1 5 ! 2 0 1 6 ! 2 0 1 7 ! ≡ 1 ( m o d 2 0 1 7 )
2 0 1 6 ! 2 0 1 7 ! 2 0 1 8 ! × 2 0 1 5 ! 2 0 1 6 ! 2 0 1 7 ! ≡ 1 × 1 ( m o d 2 0 1 7 )
2 0 1 6 ! 2 0 1 7 ! 2 0 1 8 ! × 2 0 1 5 ! 2 0 1 6 ! 2 0 1 7 ! ≡ 1 ( m o d 2 0 1 7 )