A right triangle has an area of 7 7 unit 2 and a hypotenuse of length 3 1 7 . Find the length of the longest cathetus (side length of a triangle that is not the hypotenuse).
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
A triangle with hypotenuse is a right-angle triangle. Let lengths of the two legs be a and b . Then we have:
{ 2 1 a b = 7 7 a 2 + b 2 = 3 1 7 ⟹ a b = 1 5 4 ⟹ a 2 + b 2 = 3 1 7
Consider:
( a + b ) 2 ⟹ a + b ( a − b ) 2 ⟹ a − b ( 1 ) + ( 2 ) : 2 a ⟹ a b = a 2 + b 2 + 2 a b = 3 1 7 + 3 0 8 = 6 2 5 = 6 2 5 = 2 5 . . . ( 1 ) = a 2 + b 2 − 2 a b = 3 1 7 − 3 0 8 = 9 = 9 = 3 . . . ( 2 ) = 2 8 = 1 4 = a − 3 = 1 1
The longest leg is a = 1 4 .
2 1 b h = 7 7 b 2 + h 2 = 3 1 7 b 2 + h 2 = 3 1 7 b = 3 1 7 − h 2 n o w p l u g i n 2 1 h 3 1 7 − h 2 = 7 7 h 3 1 7 − h 2 = 1 5 4 s q u a r e b o t h s i d e s h 2 ( 3 1 7 − h 2 ) = 2 3 7 1 6 d i s t r i b u t e h 2 3 1 7 − h 4 = 2 3 7 1 6 s u b t r a c t 2 3 7 1 6 f r o m b o t h s i d e s − h 4 + 3 1 7 h 2 − 2 3 7 1 6 = 0 f a c t o r − 1 h 4 − 3 1 7 h 2 + 2 3 7 1 6 = 0 l e t a = h 2 a 2 − 3 1 7 a + 2 3 7 1 6 = 0 f a c t o r ( a − 1 2 1 ) ( a − 1 9 6 ) = 0 n o w r e p l a c e a w i t h h 2 ( h 2 − 1 2 1 ) ( h 2 − 1 9 6 ) = 0 f a c t o r a g a i n ( h − 1 1 ) ( h + 1 1 ) ( h − 1 4 ) ( h + 1 4 ) = 0 h = 1 1 , − 1 1 , 1 4 , − 1 4 S i n c e w e a r e l o o k i n g f o r a u n i t o f l e n g t h w e o n l y t a k e t h e p o s i t i v e . T h e r e f o r e t h e l e n g t h s o f t h e l e g s a r e t h e t r i a n g l e a r e 1 1 , 1 4 .
Problem Loading...
Note Loading...
Set Loading...
Let the sides be L , B where L > B . It is given That L B = 1 5 4 and L 2 + B 2 = 3 1 7 → Equation 1 ( L 2 − B 2 ) 2 = ( L 2 + B 2 ) 2 − 4 ⋅ L 2 B 2 ( L 2 − B 2 ) 2 = 3 1 7 2 − 3 0 8 2 = 9 ⋅ 6 2 5 L 2 − B 2 = 7 5 → Equation 2 After adding the Two Equations : L 2 = 1 9 6 L = 1 4