The Trigonometric Pie

Geometry Level pending

f ( θ ) = sin 2 ( 4 θ ) sin 2 ( θ ) sin ( θ ) sin ( 5 θ ) \large f ( \theta) =\frac { \sin ^{ 2 }{ (4\theta } )-\sin ^{ 2 }{ (\theta ) } }{ \sin { (\theta )\sin { (5\theta ) } } }

Let function f ( θ ) f(\theta) be defined as above. Find n = 0 8 ( f ( 2 n 1 θ ) 1 ) \displaystyle \prod _{n=0}^8 \left(f (2^{n-1} \theta)-1\right) , where θ = π 513 \theta =\dfrac \pi {513} .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 12, 2016

Similar solution as @Saurav Dosi 's, different presentation.

f ( θ ) = sin 2 4 θ sin 2 θ sin θ sin 5 θ As sin 2 A sin 2 B = sin ( A + B ) sin ( A B ) = sin 5 θ sin 3 θ sin θ sin 5 θ = sin 3 θ sin θ As sin 3 θ = 3 sin θ 4 sin 3 θ = 3 sin θ 4 sin 3 θ sin θ = 3 4 sin 2 θ = 1 + 2 ( 1 2 sin 2 θ ) As cos 2 θ = 1 2 sin 2 θ = 1 + 2 cos 2 θ \begin{aligned} f(\theta) & = \frac {\sin^2 4\theta-\sin^2 \theta}{\sin \theta \sin 5\theta} & \small \color{#3D99F6}{\text{As }\sin^2 A-\sin^2 B = \sin(A+B)\sin(A-B)} \\ & = \frac {\sin 5\theta \sin 3\theta}{\sin \theta \sin 5\theta} \\ & = \frac {\color{#3D99F6}{\sin 3\theta}}{\sin \theta} & \small \color{#3D99F6}{\text{As }\sin 3\theta = 3\sin \theta-4 \sin^3 \theta} \\ & = \frac {\color{#3D99F6}{3\sin \theta-4 \sin^3 \theta}}{\sin \theta} \\ & = 3-4 \sin^2 \theta \\ & = 1+2(\color{#3D99F6}{1-2 \sin^2 \theta}) & \small \color{#3D99F6}{\text{As }\cos 2\theta = 1-2 \sin^2 \theta} \\ & = 1 + 2\color{#3D99F6}{\cos 2 \theta} \end{aligned}

Therefore,

P = n = 0 8 ( f ( 2 n 1 θ ) 1 ) = n = 0 8 ( 1 + 2 cos ( 2 2 n 1 θ ) 1 ) = n = 0 8 ( 1 + 2 cos 2 n θ 1 ) = n = 0 8 2 cos 2 n θ = 2 9 cos θ cos 2 θ cos 3 θ . . . cos 8 θ = 2 9 sin θ cos θ cos 2 θ cos 4 θ . . . cos 256 θ sin θ = 2 8 sin 2 θ cos 2 θ cos 4 θ cos 8 θ . . . cos 256 θ sin θ = 2 7 sin 4 θ cos 4 θ cos 8 θ cos 16 θ . . . cos 256 θ sin θ = . . . = sin 512 θ sin θ Putting θ = π 513 = sin 512 π 513 sin π 513 As sin ( π x ) = sin x = sin π 513 sin π 513 = 1 \begin{aligned} P & = \prod_{n=0}^8 \left(f(2^{n-1}\theta) - 1 \right) \\ & = \prod_{n=0}^8 \left(1 + 2\cos (2\cdot 2^{n-1} \theta) - 1 \right) \\ & = \prod_{n=0}^8 \left(1 + 2\cos 2^n \theta - 1 \right) \\ & = \prod_{n=0}^8 2\cos 2^n \theta \\ & = 2^9\cos \theta \ \cos 2 \theta \ \cos 3 \theta \ ...\ \cos 8 \theta \\ & = \frac {2^9\color{#3D99F6}{\sin \theta} \ \cos \theta \ \cos 2 \theta \ \cos 4 \theta \ ...\ \cos 256 \theta}{\color{#3D99F6}{\sin \theta}} \\ & = \frac {2^8 \sin 2 \theta \ \cos 2 \theta \ \cos 4 \theta \ \cos 8 \theta \ ...\ \cos 256 \theta}{\sin \theta} \\ & = \frac {2^7 \sin 4 \theta \ \cos 4 \theta \ \cos 8 \theta \ \cos 16 \theta \ ...\ \cos 256 \theta}{\sin \theta} \\ & = \ ... \\ & = \frac {\sin 512 \theta}{\sin \theta} \quad \quad \small \color{#3D99F6}{\text{Putting }\theta=\frac \pi{513}} \\ & = \frac {\color{#3D99F6}{\sin \frac {512 \pi}{513}}}{\sin \frac \pi{513}} \quad \quad \small \color{#3D99F6}{\text{As }\sin (\pi-x) = \sin x} \\ & = \frac {\color{#3D99F6}{\sin \frac \pi{513}}}{\sin \frac \pi{513}} = \boxed{1} \end{aligned}

Saurav Dosi
Oct 12, 2016

Simplifying the given function,

f ( θ ) = sin ( 4 θ + θ ) sin ( 4 θ θ ) sin ( θ ) sin ( 5 θ ) f\left( \theta \right) =\frac { \sin { (4\theta +\theta )\sin { (4\theta -\theta ) } } }{ \sin { (\theta )\sin { (5\theta ) } } } .......................................................................................................( sin 2 ( A ) sin 2 ( B ) = sin ( A + B ) sin ( A B ) \sin ^{ 2 }{ (A)-\sin ^{ 2 }{ (B)=\sin { (A+B)\sin { (A-B) } } } } )

f ( θ ) = sin ( 5 θ ) sin ( 3 θ ) sin ( θ ) sin ( 5 θ ) f\left( \theta \right) =\frac { \sin { (5\theta )\sin { (3\theta ) } } }{ \sin { (\theta )\sin { (5\theta ) } } }

f ( θ ) = sin ( 3 θ ) sin ( θ ) f\left( \theta \right) =\frac { \sin { (3\theta ) } }{ \sin { (\theta ) } }

f ( θ ) = 3 sin ( θ ) 4 sin 3 ( θ ) sin ( θ ) f\left( \theta \right) =\frac { 3\sin { (\theta )-4\sin ^{ 3 }{ (\theta ) } } }{ \sin { (\theta ) } } ..........................................................................................................(Triple angle formula)

f ( θ ) = 3 4 sin 2 ( θ ) f\left( \theta \right) =3-4\sin ^{ 2 }{ (\theta ) }

f ( θ ) = 1 + 2 ( 1 2 sin 2 ( θ ) ) f\left( \theta \right) =1+2(1-2\sin ^{ 2 }{ (\theta )) }

f ( θ ) = 1 + 2 cos ( 2 θ ) f\left( \theta \right) =1+2\cos { (2\theta ) } ............................................................................................................(Double angle formula)

Thus,

f ( θ ) 1 = 2 cos ( 2 θ ) f\left( \theta \right) -1=2\cos { (2\theta ) }

And hence,

f ( 2 n 1 ( θ ) ) 1 = 2 cos ( 2 × 2 n 1 ( θ ) ) f\left( { 2 }^{ n-1 }(\theta) \right) -1=2\cos { (2\times { 2 }^{ n-1 }(\theta )) }

That is,

f ( 2 n 1 ( θ ) ) 1 = 2 cos ( 2 n ( θ ) ) f\left( { 2 }^{ n-1 }(\theta) \right) -1=2\cos { ({ 2 }^{ n }(\theta )) }

Now,

n = 0 8 ( f ( 2 n 1 ( θ ) ) 1 ) = 2 cos ( θ ) × 2 cos ( 2 θ ) × . . . . . . . . . × 2 cos ( 2 8 θ ) \prod _{ n=0 }^{ 8 }{ (f({ 2 }^{ n-1 }\left( \theta ) \right) -1)=2\cos { (\theta )\times 2\cos { (2\theta )\times .........\times 2\cos { ({ 2 }^{ 8 }\theta ) } } } }

n = 0 8 ( f ( 2 n 1 ( θ ) ) 1 ) = 2 9 ( cos ( θ ) × cos ( 2 θ ) × . . . . . . . . . × cos ( 2 8 θ ) ) \prod _{ n=0 }^{ 8 }{ (f({ 2 }^{ n-1 }\left( \theta ) \right) -1)={ 2 }^{ 9 }(\cos { (\theta )\times \cos { (2\theta )\times .........\times \cos { ({ 2 }^{ 8 }\theta )) } } } }

n = 0 8 ( f ( 2 n 1 ( θ ) ) 1 ) = 2 9 ( sin ( 2 9 θ ) 2 9 sin ( θ ) ) \prod _{ n=0 }^{ 8 }{ (f({ 2 }^{ n-1 }\left( \theta ) \right) -1)={ 2 }^{ 9 }(\frac { \sin { ({ 2 }^{ 9 }\theta ) } }{ { 2 }^{ 9 }\sin { (\theta ) } } ) } ..............................................................................( r = 0 n 1 cos ( 2 r θ ) = sin ( 2 n θ ) 2 n sin ( θ ) \prod _{ r=0 }^{ n-1 }{ \cos { ({ 2 }^{ r }\theta )=\frac { \sin { ({ 2 }^{ n }\theta ) } }{ { 2 }^{ n }\sin { (\theta ) } } } } )

n = 0 8 ( f ( 2 n 1 ( θ ) ) 1 ) = sin ( 2 9 θ ) sin ( θ ) \prod _{ n=0 }^{ 8 }{ (f({ 2 }^{ n-1 }\left( \theta ) \right) -1)=\frac { \sin { ({ 2 }^{ 9 }\theta ) } }{ \sin { (\theta ) } } }

Putting θ = π 513 \theta =\frac { \pi }{ 513 } ,

Answer = sin ( 512 π 513 ) sin ( π 513 ) \frac { \sin { (\frac { 512\pi }{ 513 } ) } }{ \sin { (\frac { \pi }{ 513 } ) } }

Answer = sin ( π π 513 ) sin ( π 513 ) \frac { \sin { (\pi -\frac { \pi }{ 513 } ) } }{ \sin { (\frac { \pi }{ 513 } ) } }

Answer = sin ( π 513 ) sin ( π 513 ) \frac { \sin { (\frac { \pi }{ 513 } ) } }{ \sin { (\frac { \pi }{ 513 } ) } } ....................................................................................................................( sin ( π θ ) = sin ( θ ) \sin { (\pi -\theta )=\sin { (\theta ) } } )

Answer = 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...