The Trouble Of Squared Sines

Calculus Level 5

n = 1 sin 2 ( n π 12 ) sin 2 ( n π 16 ) n 2 \large\sum_{n=1}^\infty \dfrac{\sin^2 \left( \frac{n\pi}{12}\right) \sin^2 \left(\frac{n\pi}{16}\right) }{n^2}

If the series above is equal to A × π B A\times \pi^B for rational numbers A A and B B , find the value of B ÷ A B\div A .


The answer is 128.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sudeep Salgia
Dec 1, 2015

Relevant wiki: Fourier Series

Consider a function, g x ( z ) : [ 0 , π ] R g_x (z) : \left[ 0, \pi \right] \rightarrow \mathbb{R} , where 0 < x < π 2 \displaystyle 0<x< \frac{\pi}{2} is a parameter which is defined as follows
g x ( z ) = { π 4 0 < z < 2 x 0 2 x < z π g_x (z) = \begin{cases} \frac{\pi}{4} & 0 < z < 2x \\ 0 & 2x < z \leq \pi\\ \end{cases} The function can be expressed as a Fourier sine series as n = 1 sin 2 ( n x ) n sin ( n z ) \displaystyle \sum_{n=1}^{\infty} \frac{\sin^2 (nx)}{n} \sin(nz) .
Thus over the domain, we can write,
g x ( z ) = n = 1 sin 2 ( n x ) n sin ( n z ) \displaystyle g_x (z) = \sum_{n=1}^{\infty} \frac{\sin^2 (nx)}{n} \sin(nz)
0 2 y g x ( z ) d z = n = 1 sin 2 ( n x ) n 0 2 y sin ( n z ) d z \displaystyle \Rightarrow \int_0^{2y} g_x (z) dz = \sum_{n=1}^{\infty} \frac{\sin^2 (nx)}{n} \int_0^{2y} \sin(nz) dz
The RHS evaluates to 2 n = 1 sin 2 ( n x ) sin 2 ( n y ) n 2 \displaystyle 2 \sum_{n=1}^{\infty} \frac{\sin^2 (nx) \sin^2 (ny)}{n^2} which is actually 2 2 times the required sum for x = π 12 x = \dfrac{\pi}{12} and y = π 16 y = \dfrac{\pi}{16} .


The evaluation of the LHS actually depends upon the relative values of x x and y y . If x > y x > y , then, 0 2 y g x ( z ) d z = 0 2 y π 4 d z = 2 × π 4 y \displaystyle \int_0^{2y} g_x (z) dz = \int_0^{2y} \frac{\pi}{4} dz = 2 \times \frac{\pi}{4}y
Otherwise, if x < y x < y , then, 0 2 y g x ( z ) d z = 0 2 x π 4 d z = 2 × π 4 x \displaystyle \int_0^{2y} g_x (z) dz = \int_0^{2x} \frac{\pi}{4} dz = 2 \times \frac{\pi}{4}x

Thus, LHS is actually 2 × π 4 min ( x , y ) \displaystyle 2 \times \frac{\pi}{4} \text{min}(x,y) .

Therefore, n = 1 sin 2 ( n x ) sin 2 ( n y ) n 2 = π 4 min ( x , y ) \displaystyle \sum_{n=1}^{\infty} \frac{\sin^2 (nx) \sin^2 (ny)}{n^2} = \frac{\pi}{4} \text{min}(x,y) .

n = 1 sin 2 ( n π 12 ) sin 2 ( n π 16 ) n 2 = π 4 min ( n π 12 , π 16 ) = π 2 64 \displaystyle \sum_{n=1}^{\infty} \frac{\sin^2 \left( \frac{n \pi}{12} \right) \sin^2 \left( \frac{n \pi}{16} \right)}{n^2} = \frac{\pi}{4} \text{min}\left( \frac{n \pi}{12} , \frac{\pi}{16} \right) = \boxed{\frac{\pi ^2}{64} } .
Compare and substitute to get the final answer as 128 128 .

Moderator note:

Interesting approach of using the Fourier sine series, motivated by solving of the Basel problem in a similar manner.

Minor typo in the last equation, n π 12 \frac{n\pi}{12} should be π 12 \frac{\pi}{12} .

Calvin Lin Staff - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...