The truth is that I can't create problems. (Corrected once)

Algebra Level 2

Given that x 2 + y 2 2 x 4 y + 4 = 0 x^2 + y^2 - 2x - 4y + 4 = 0 . If the maximum value of the following expression is a b + c a\sqrt b + c with b b is square-free then enter your answer as a b 2 + c ab^2 + c .

x 2 y 2 + 2 3 x y ( 4 3 + 2 ) x + ( 4 2 3 ) y ( 4 3 + 3 ) \large \left|x^2 - y^2 + 2\sqrt 3xy - (4\sqrt 3 + 2)x + (4 - 2\sqrt 3)y - (4\sqrt 3 + 3)\right|


The answer is 74.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Given that

x 2 + y 2 2 x 4 y + 4 = 0 x 2 2 x + 1 + y 2 4 y + 4 1 = 0 ( x 1 ) 2 + ( y 2 ) 2 = 1 We can rewrite as cos 2 θ + sin 2 θ = 1 where x 1 = cos θ , y 2 = sin θ \begin{aligned} x^2 + y^2 - 2x - 4y + 4 & = 0 \\ x^2 - 2x + 1 + y^2 - 4y + 4 - 1 & = 0 \\ (x-1)^2 + (y-2)^2 & = 1 & \small \color{#3D99F6} \text{We can rewrite as} \\ \cos^2 \theta + \sin^2 \theta & = 1 & \small \color{#3D99F6} \text{where }x-1 = \cos \theta, \ y-2 = \sin \theta \end{aligned}

Now consider:

f ( x , y ) = x 2 y 2 + 2 3 x y ( 4 3 + 2 ) x + ( 4 2 3 ) y ( 4 3 + 3 ) = x 2 2 x + 1 ( y 2 4 y + 4 ) + 2 3 ( x y 2 x y ) 4 3 = ( x 1 ) 2 ( y 2 ) 2 + 2 3 ( x 1 ) ( y 2 ) 8 3 Put x 1 = cos θ , y 2 = sin θ = cos 2 θ sin 2 θ + 2 3 cos θ sin θ 8 3 = cos ( 2 θ ) + 3 sin ( 2 θ ) 8 3 = 2 ( 1 2 cos ( 2 θ ) + 3 2 sin ( 2 θ ) ) 8 3 = 2 sin ( 2 θ + π 6 ) 8 3 \begin{aligned} f(x,y) & = x^2 - y^2 + 2\sqrt 3 xy - (4\sqrt 3+2)x + (4-2\sqrt 3)y - (4\sqrt 3+3) \\ & = x^2 - 2x + 1 - (y^2 - 4y + 4) + 2\sqrt 3 (xy - 2x - y) - 4\sqrt 3 \\ & = (x-1)^2 - (y-2)^2 + 2\sqrt 3(x-1)(y-2) - 8\sqrt 3 & \small \color{#3D99F6} \text{Put }x-1 = \cos \theta, \ y-2 = \sin \theta \\ & = \cos^2 \theta - \sin^2 \theta + 2\sqrt 3\cos \theta \sin \theta - 8 \sqrt 3 \\ & = \cos (2\theta) + \sqrt 3 \sin (2\theta) - 8 \sqrt 3 \\ & = 2\left(\frac 12 \cos(2\theta) + \frac {\sqrt 3}2\sin (2\theta)\right) - 8\sqrt 3 \\ & = 2 \sin \left(2\theta + \frac \pi 6\right) - 8\sqrt 3 \end{aligned}

We note that f ( x , y ) |f(x,y)| is maximum, when f ( x , y ) f(x,y) is minimum or having the largest negative value. And that is when sin ( 2 θ + π 6 ) = 1 \sin \left(2\theta + \frac \pi 6\right) = -1 . Therefore, max f ( x , y ) = 2 8 3 = 8 3 + 2 \max |f(x,y)| = \left|-2-8\sqrt 3\right| = 8\sqrt 3 + 2 . a b 2 + c = 8 ( 3 2 ) + 2 = 74 \implies ab^2 + c = 8(3^2) + 2 = \boxed{74} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...