Given that x 2 + y 2 − 2 x − 4 y + 4 = 0 . If the maximum value of the following expression is a b + c with b is square-free then enter your answer as a b 2 + c .
∣ ∣ ∣ x 2 − y 2 + 2 3 x y − ( 4 3 + 2 ) x + ( 4 − 2 3 ) y − ( 4 3 + 3 ) ∣ ∣ ∣
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Given that
x 2 + y 2 − 2 x − 4 y + 4 x 2 − 2 x + 1 + y 2 − 4 y + 4 − 1 ( x − 1 ) 2 + ( y − 2 ) 2 cos 2 θ + sin 2 θ = 0 = 0 = 1 = 1 We can rewrite as where x − 1 = cos θ , y − 2 = sin θ
Now consider:
f ( x , y ) = x 2 − y 2 + 2 3 x y − ( 4 3 + 2 ) x + ( 4 − 2 3 ) y − ( 4 3 + 3 ) = x 2 − 2 x + 1 − ( y 2 − 4 y + 4 ) + 2 3 ( x y − 2 x − y ) − 4 3 = ( x − 1 ) 2 − ( y − 2 ) 2 + 2 3 ( x − 1 ) ( y − 2 ) − 8 3 = cos 2 θ − sin 2 θ + 2 3 cos θ sin θ − 8 3 = cos ( 2 θ ) + 3 sin ( 2 θ ) − 8 3 = 2 ( 2 1 cos ( 2 θ ) + 2 3 sin ( 2 θ ) ) − 8 3 = 2 sin ( 2 θ + 6 π ) − 8 3 Put x − 1 = cos θ , y − 2 = sin θ
We note that ∣ f ( x , y ) ∣ is maximum, when f ( x , y ) is minimum or having the largest negative value. And that is when sin ( 2 θ + 6 π ) = − 1 . Therefore, max ∣ f ( x , y ) ∣ = ∣ ∣ − 2 − 8 3 ∣ ∣ = 8 3 + 2 . ⟹ a b 2 + c = 8 ( 3 2 ) + 2 = 7 4 .