The Twin

Geometry Level 3


The answer is 2.236.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Using the formula r s = [ A D B ] r * s = [\triangle ADB] where s s is the semiperimeter, r r is the radius of the triangle's incircle and [ A D B ] [\triangle ADB] is the area of A D B \triangle ADB , we can solve for the radius. Because B D = 5 \overline {\rm BD} = 5 by the Pythagorean Theorem, s = 3 + 4 + 5 2 = 6 s = \frac {3 + 4+ 5}{2} = 6 . Furthermore, [ A D B ] = 3 4 2 = 6 [\triangle ADB] = \frac{3*4}{2} = 6 . Thus, solving for the radius of either incircle, we get r = [ A D B ] s = 6 6 = 1 r = \frac{ [\triangle ADB]}{s} = \frac{6}{6} = 1 Then, by realizing that both triangles are identical, D E \overline {\rm DE} must be 1 1 apart vertically and 2 2 apart horizontally. Thus, by the Pythagorean Theorem. 1 2 + 2 2 = 5 2.236 \sqrt{1^{2} + 2^{2}} = \sqrt{5} \approx \boxed{2.236}

Consider my diagram.

tan D B C = 3 4 \tan \angle DBC=\dfrac{3}{4} \implies D B C = tan 1 ( 3 4 ) \angle DBC = \tan^{-1}\left(\dfrac{3}{4}\right)

It follows that

E B C = 1 2 D B C = 1 2 [ tan 1 ( 3 4 ) ] \angle EBC = \dfrac{1}{2} \angle DBC = \dfrac{1}{2}\left[\tan^{-1}\left(\dfrac{3}{4}\right)\right]

Then,

tan E B C = r 4 r \tan \angle EBC = \dfrac{r}{4-r}

tan 1 2 [ tan 1 ( 3 4 ) ] = r 4 r \tan \dfrac{1}{2}\left[\tan^{-1}\left(\dfrac{3}{4}\right)\right]=\dfrac{r}{4-r}

By the use of a calculator,

1 3 = r 4 r \dfrac{1}{3}=\dfrac{r}{4-r}

r = 1 r=1

Apply pythagorean theorem on the blue right triangle, we have

( D E ) 2 = ( 3 2 r ) 2 + ( 4 2 r ) 2 = ( 3 2 ) 2 + ( 4 2 ) 2 = 1 + 4 = 5 (DE)^2=(3-2r)^2+(4-2r)^2=(3-2)^2+(4-2)^2=1+4=5

Finally,

D E = 5 2.236067978 \boxed{DE=\sqrt{5}\approx 2.236067978}

David Vreken
Feb 20, 2018

Circles D D and E E are incenters of A B D \triangle ABD and C D B \triangle CDB . Setting B B at the origin, we have A ( 0 , 3 ) A(0, 3) , B ( 0 , 0 ) B(0, 0) , C ( 4 , 0 ) C(4, 0) , and D ( 4 , 3 ) D(4, 3) .

So A B D \triangle ABD 's incenter D D is at ( a x 1 + b x 2 + c x 3 a + b + c , a y 1 + b y 2 + c y 3 a + b + c ) = ( 3 4 + 4 0 + 5 0 3 + 4 + 5 , 3 3 + 4 0 + 5 3 3 + 4 + 5 ) = ( 1 , 2 ) (\frac{ax_1 + bx_2 + cx_3}{a + b + c}, \frac{ay_1 + by_2 + cy_3}{a + b + c}) = (\frac{3 \cdot 4 + 4 \cdot 0 + 5 \cdot 0}{3 + 4 + 5}, \frac{3 \cdot 3 + 4 \cdot 0 + 5 \cdot 3}{3 + 4 + 5}) = (1, 2) , and C D B \triangle CDB 's incenter E E is at ( a x 1 + b x 2 + c x 3 a + b + c , a y 1 + b y 2 + c y 3 a + b + c ) = ( 3 0 + 4 4 + 5 4 3 + 4 + 5 , 3 0 + 4 3 + 5 0 3 + 4 + 5 ) = ( 3 , 1 ) (\frac{ax_1 + bx_2 + cx_3}{a + b + c}, \frac{ay_1 + by_2 + cy_3}{a + b + c}) = (\frac{3 \cdot 0 + 4 \cdot 4 + 5 \cdot 4}{3 + 4 + 5}, \frac{3 \cdot 0 + 4 \cdot 3 + 5 \cdot 0}{3 + 4 + 5}) = (3, 1) .

The distance between D ( 1 , 2 ) D(1, 2) and E ( 3 , 1 ) E(3, 1) is d = ( x 2 x 1 ) 2 + ( y 2 y 1 ) 2 = ( 3 1 ) 2 + ( 1 2 ) 2 = 5 2.236 d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(3 - 1)^2 + (1 - 2)^2} = \sqrt{5} \approx \boxed{2.236} .

Marta Reece
Feb 19, 2018

Radius of the circles is 1. Horizontal distance between centers is 2, vertical distance is 1. D E = 5 DE=\boxed{\sqrt5} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...