A calculus problem by Aly Ahmed

Calculus Level 3

f ( x ) = ln x ln ( x 2 + 3 ) d t 3 + e t \large f(x) = \int_{\ln x}^{\ln(x^2 + 3)} \frac{dt}{3+e^t}

Define f ( x ) f(x) as shown above for x 1 x\geq1 . Given that f ( 2 ) = 3 a f'(2) = -\dfrac3a , find a a .


The answer is 70.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 15, 2020

There is a direct method, where we can avoid integration.

f ( x ) = ln x ln ( x 2 + 3 ) d t 3 + e t For f ( x ) = k h ( x ) g ( t ) d t , where k is a constant, f ( x ) = 1 3 + e ln ( x 2 + 3 ) d ln ( x 2 + 3 ) d x 1 3 + e ln x d ln x d x f ( x ) = g ( h ( x ) ) h ( x ) = 1 x 2 + 6 2 x x 2 + 3 1 x + 3 1 x f ( 2 ) = 4 70 1 10 = 3 70 \begin{aligned} f(x) & = \int_{\ln x}^{\ln(x^2+3)} \frac {dt}{3+e^t} & \small \blue{\text{For }f(x) = \int_k^{h(x)}g(t)\ dt \text{, where }k \text{ is a constant,}} \\ \implies f'(x) & = \frac 1{3+e^{\ln(x^2+3)}} \cdot \frac {d \ln(x^2+3)}{dx} - \frac 1{3+e^{\ln x}} \cdot \frac {d \ln x}{dx} & \small \blue{\implies f'(x) = g(h(x)) h'(x)} \\ & = \frac 1{x^2+6} \cdot \frac {2x}{x^2+3} - \frac 1{x+3} \cdot \frac 1x \\ \implies f'(2) & = \frac 4{70} - \frac 1{10} = - \frac 3{70} \end{aligned}

Therefore, a = 70 a=\boxed{70} .

By integrating we get f ( x ) = 1 3 ln ( x + 3 ) ( x 2 + 3 ) x ( x 2 + 6 ) f(x)=\dfrac {1}{3}\ln \dfrac{(x+3)(x^2+3)}{x(x^2+6)}

So f ( x ) = 3 x 4 + 6 x 3 9 x 2 54 3 x ( x + 3 ) ( x 2 + 3 ) ( x 2 + 6 ) f'(x) =\dfrac {-3x^4+6x^3-9x^2-54}{3x(x+3)(x^2+3)(x^2+6)}

f ( 2 ) = 48 48 36 54 3 × 2 × 5 × 7 × 10 = 3 70 \implies f'(2)=\dfrac{48-48-36-54}{3\times 2\times 5\times 7\times 10}=-\dfrac{3}{70}

Hence a = 70 a=\boxed {70} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...