∣ x − 3 ∣ + ∣ x 2 − 9 ∣ − 7 = 0
The sum of all real x satisfying the equation above is − n m , where m and n are coprime positive integers. Find m + n .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Thanks for mentoining me
@Zakir Husain , Can,i post my solution..
It is mostly similar to yours
@Zakir Husain , I have reworded the problem description for you. Much simpler than your version.
Note that ∣ x − 3 ∣ + ∣ x 2 − 9 ∣ − 7 = ⎩ ⎪ ⎨ ⎪ ⎧ x − 3 + x 2 − 9 − 7 = x − 1 0 + x 2 − 9 3 − x + 9 − x 2 − 7 = − x − 4 + 9 − x 2 3 − x + x 2 − 9 − 7 = − x − 4 + x 2 − 9 for x > 3 for − 3 < x ≤ 3 for x ≤ − 3
For x > 3 :
x 2 − 9 x 2 − 9 ⟹ x = 1 0 − x = x 2 − 2 0 x + 1 0 0 = 2 0 1 0 9 Squaring both sides
For − 3 < x ≤ 3 :
9 − x 2 9 − x 2 2 x + 8 x + 7 ⟹ x = x + 4 = x 2 + 8 x + 1 6 = 0 = 4 − 8 ± 6 4 − 5 6 = − 2 ± 2 1 Squaring both sides
For x ≤ − 3 :
x 2 − 9 x 2 − 9 ⟹ x = x + 4 = x 2 + 8 x + 1 6 = − 8 2 5 Squaring both sides
Therefore the sum of all real roots is 2 0 1 0 9 − 2 + 2 1 − 2 − 2 1 − 8 2 5 = − 4 0 6 7 ⟹ m + n = 6 7 + 4 0 = 1 0 7 .
Brilliant ....i am thinking about writing solution but,now i will not.
Problem Loading...
Note Loading...
Set Loading...
Case 1 x > 3 x − 3 > 0 ⇒ ∣ x − 3 ∣ = x − 3 a n d x 2 − 9 = ( x − 3 ) ( x + 3 ) ∀ x ∈ Z + ∣ x − 3 > 0 ; ( x − 3 ) ( x + 3 ) > 0 ⇒ x 2 − 9 > 0 ⇒ ∣ x 2 − 9 ∣ = x 2 − 9 Putting these values x − 3 + x 2 − 9 − 7 = 0 x 2 − 9 = 1 0 − x x 2 − 9 = 1 0 0 + x 2 − 2 0 x 2 0 x = 1 0 9 x = 2 0 1 0 9
Case 2 x < 3
Case 2 ( a ) x 2 < 9 ∣ x − 3 ∣ = − ( x − 3 ) = 3 − x . . . . . . . . . . ( ∵ x < 3 ⇒ x − 3 < 0 ) ∣ x 2 − 9 ∣ = − ( x 2 − 9 ) = 9 − x 2 . . . . . . . . . . ( ∵ x 2 < 9 ⇒ x 2 − 9 < 0 ) Putting these values 3 − x + 9 − x 2 − 7 = 0 9 − x 2 = 4 + x 9 − x 2 = x 2 + 1 6 + 8 x 2 x 2 + 8 x + 7 = 0 As b 2 − 4 a c = 8 2 − 4 ( 2 ) ( 7 ) = 6 4 − 5 6 = 8 > 0 ∴ the equation has real roots
From Vieta's formula Sum of it's roots = 2 − 8 = − 4
Case 2 ( b ) x 2 > 9 ∣ x − 3 ∣ = − ( x − 3 ) = 3 − x . . . . . . . . . . ( ∵ x < 3 ⇒ x − 3 < 0 ) ∣ x 2 − 9 ∣ = x 2 − 9 . . . . . . . . . . ( ∵ x 2 > 9 ⇒ x 2 − 9 > 0 ) Putting these values 3 − x + x 2 − 9 − 7 = 0 x 2 − 9 = 4 + x x 2 − 9 = x 2 + 1 6 + 8 x 0 = 2 5 + 8 x x = 8 − 2 5
Sum of all real values of x = − 4 + 2 0 1 0 9 − 2 5 8 = 4 0 − 1 6 0 + 2 1 8 − 1 2 5 = 4 0 2 1 8 − 2 8 5 = 4 0 − 6 7 − 6 7 ∈ Z ; 4 0 ∈ Z ; g cd ( 6 7 , 4 0 ) = 1 ; 6 7 + 4 0 = 1 0 7