The variable question - 2

Algebra Level 3

x 3 + x 2 9 7 = 0 |x-3|+\sqrt{|x^2-9|}-7=0

The sum of all real x x satisfying the equation above is m n -\dfrac mn , where m m and n n are coprime positive integers. Find m + n m+n .


Inspiration


The answer is 107.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zakir Husain
Jun 27, 2020
  • x = 3 x=3 and x = 3 x=-3 are not solutions

Case 1 x > 3 x>3 x 3 > 0 x 3 = x 3 x-3>0\Rightarrow |x-3|=x-3 a n d and x 2 9 = ( x 3 ) ( x + 3 ) x Z + x 3 > 0 ; ( x 3 ) ( x + 3 ) > 0 x 2 9 > 0 x 2 9 = x 2 9 x^2-9=(x-3)(x+3)\forall x\in Z^+|x-3>0;(x-3)(x+3)>0\Rightarrow x^2-9>0\Rightarrow |x^2-9|=x^2-9 Putting these values x 3 + x 2 9 7 = 0 x-3+\sqrt{x^2-9}-7=0 x 2 9 = 10 x \sqrt{x^2-9}=10-x x 2 9 = 100 + x 2 20 x \cancel{x^2}-9=100\cancel{+x^2}-20x 20 x = 109 20x=109 x = 109 20 \boxed{x=\frac{109}{20}}


Case 2 x < 3 x<3

Case 2 ( a a ) x 2 < 9 x^2<9 x 3 = ( x 3 ) = 3 x . . . . . . . . . . ( x < 3 x 3 < 0 ) |x-3|=-(x-3)=3-x..........(\because x<3 \Rightarrow x-3<0) x 2 9 = ( x 2 9 ) = 9 x 2 . . . . . . . . . . ( x 2 < 9 x 2 9 < 0 ) |x^2-9|=-(x^2-9)=9-x^2..........(\because x^2<9\Rightarrow x^2-9<0) Putting these values 3 x + 9 x 2 7 = 0 3-x+\sqrt{9-x^2}-7=0 9 x 2 = 4 + x \sqrt{9-x^2}=4+x 9 x 2 = x 2 + 16 + 8 x 9-x^2=x^2+16+8x 2 x 2 + 8 x + 7 = 0 2x^2+8x+7=0 As b 2 4 a c = 8 2 4 ( 2 ) ( 7 ) = 64 56 = 8 > 0 b^2-4ac=8^2-4(2)(7)=64-56=8>0\therefore the equation has real roots

From Vieta's formula Sum of it's roots = 8 2 = 4 \boxed{=\dfrac{-8}{2}=-4}

Case 2 ( b b ) x 2 > 9 x^2>9 x 3 = ( x 3 ) = 3 x . . . . . . . . . . ( x < 3 x 3 < 0 ) |x-3|=-(x-3)=3-x..........(\because x<3 \Rightarrow x-3<0) x 2 9 = x 2 9.......... ( x 2 > 9 x 2 9 > 0 ) |x^2-9|=x^2-9..........(\because x^2>9\Rightarrow x^2-9>0) Putting these values 3 x + x 2 9 7 = 0 3-x+\sqrt{x^2-9}-7=0 x 2 9 = 4 + x \sqrt{x^2-9}=4+x x 2 9 = x 2 + 16 + 8 x \cancel{x^2}-9=\cancel{x^2}+16+8x 0 = 25 + 8 x 0=25+8x x = 25 8 \boxed{x=\dfrac{-25}{8}}

Sum of all real values of x = 4 + 109 20 258 = 160 + 218 125 40 = 218 285 40 = 67 40 x=-4+\dfrac{109}{20}-{25}{8}=\dfrac{-160+218-125}{40}=\dfrac{218-285}{40}=\dfrac{-67}{40} 67 Z ; 40 Z ; gcd ( 67 , 40 ) = 1 ; 67 + 40 = 107 -67\in Z;40\in Z;\gcd(67,40)=1;67+40=\boxed{107}

@Kriti Kamal

Zakir Husain - 11 months, 2 weeks ago

Thanks for mentoining me

A Former Brilliant Member - 11 months, 2 weeks ago

@Zakir Husain , Can,i post my solution..

A Former Brilliant Member - 11 months, 2 weeks ago

Log in to reply

@Kriti Kamal - Sure!

Zakir Husain - 11 months, 2 weeks ago

It is mostly similar to yours

A Former Brilliant Member - 11 months, 2 weeks ago

@Zakir Husain , I have reworded the problem description for you. Much simpler than your version.

Chew-Seong Cheong - 11 months, 2 weeks ago
Chew-Seong Cheong
Jun 27, 2020

Note that x 3 + x 2 9 7 = { x 3 + x 2 9 7 = x 10 + x 2 9 for x > 3 3 x + 9 x 2 7 = x 4 + 9 x 2 for 3 < x 3 3 x + x 2 9 7 = x 4 + x 2 9 for x 3 |x-3| + \sqrt{|x^2-9|} - 7 = \begin{cases} x-3 + \sqrt{x^2 - 9} - 7 = x-10 + \sqrt{x^2-9} & \text{for }x > 3 \\ 3-x + \sqrt{9-x^2} - 7 = -x - 4 + \sqrt{9-x^2} & \text{for }-3 < x \le 3 \\ 3-x + \sqrt{x^2-9} - 7 = -x - 4 + \sqrt{x^2-9} & \text{for } x \le - 3 \end{cases}

For x > 3 x > 3 :

x 2 9 = 10 x Squaring both sides x 2 9 = x 2 20 x + 100 x = 109 20 \begin{aligned} \sqrt{x^2-9} & = 10 - x & \small \blue{\text{Squaring both sides}} \\ x^2 - 9 & = x^2 - 20x + 100 \\ \implies x & = \frac {109}{20} \end{aligned}

For 3 < x 3 -3<x \le 3 :

9 x 2 = x + 4 Squaring both sides 9 x 2 = x 2 + 8 x + 16 2 x + 8 x + 7 = 0 x = 8 ± 64 56 4 = 2 ± 1 2 \begin{aligned} \sqrt{9-x^2} & = x+4 & \small \blue{\text{Squaring both sides}} \\ 9 - x^2 & = x^2 + 8x + 16 \\ 2x^+ 8x + 7 & = 0 \\ \implies x & = \frac {-8 \pm \sqrt{64-56}}4 \\ & = - 2 \pm \frac 1{\sqrt 2} \end{aligned}

For x 3 x \le -3 :

x 2 9 = x + 4 Squaring both sides x 2 9 = x 2 + 8 x + 16 x = 25 8 \begin{aligned} \sqrt{x^2-9} & = x+4 & \small \blue{\text{Squaring both sides}} \\ x^2 - 9 & = x^2 + 8x + 16 \\ \implies x & = - \frac {25}8 \end{aligned}

Therefore the sum of all real roots is 109 20 2 + 1 2 2 1 2 25 8 = 67 40 \dfrac {109}{20} - 2 + \dfrac 1{\sqrt 2} - 2 - \dfrac 1{\sqrt 2} - \dfrac {25}8 = - \dfrac {67}{40} m + n = 67 + 40 = 107 \implies m+n = 67+40 = \boxed{107} .

Brilliant ....i am thinking about writing solution but,now i will not.

A Former Brilliant Member - 11 months, 2 weeks ago

Log in to reply

Glad that you like it.

Chew-Seong Cheong - 11 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...