The vicious cycle (1)

Algebra Level 4

This is Problem 1.

Find the minimum value of x 2 + P 3 x + 1 x^{2}+P_{3}x+1 . x x ranges over the reals.

If you are lost, look here


The answer is -15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Feb 13, 2015

Nice 3-in-1 problem!!!

Refer to the solution of Problem 3 , we have: P 2 = 1 + P 3 \space P_2 = 1 + P_3 .

Refer to the solution of Problem 2 , we have: P 1 2 = 25 P 2 = 25 ( 1 + P 3 ) \space P_1^2 = 25P_2 = 25(1+P_3) .

Now: P 1 = m i n ( x 2 + P 3 x + 1 ) \space P_1 = min (x^2+P_3x+1) .

Let f ( x ) = x 2 + P 3 x + 1 d f ( x ) d x = 2 x + P 3 \space f(x) = x^2+P_3x+1\quad \Rightarrow \dfrac {df(x)}{dx} = 2x + P_3

d f ( x ) d x = 0 x = P 3 2 . \therefore \dfrac {df(x)}{dx} = 0 \quad \Rightarrow x = \dfrac {-P_3}{2}\text{. } Since d 2 f ( x ) d x 2 > 0 \space \dfrac {d^2f(x)}{dx^2} > 0 , P 1 = f m i n ( x ) = f ( P 3 2 ) = ( P 3 2 ) 2 + P 3 ( P 3 2 ) + 1 = 1 P 3 2 4 \Rightarrow P_1 = f_{min} (x) = f \left( \frac {-P_3}{2} \right) = \left( \frac {-P_3}{2} \right)^2 + P_3 \left( \frac {-P_3}{2} \right) +1 = 1 - \dfrac {P_3^2}{4}

4 P 1 = 1 P 3 2 16 P 1 2 = ( 4 P 3 2 ) 2 \Rightarrow 4P_1 = 1-P_3^2\quad \Rightarrow 16P_1^2 = (4 - P_3^2)^2

16 [ 25 ( 1 + P 3 ) ] = 16 8 P 3 2 + P 3 4 \Rightarrow 16[25(1+P_3)] = 16-8P_3^2+P_3^4

P 3 4 8 P 3 2 400 P 3 384 = 0 \Rightarrow P_3^4 -8P_3^2-400P_3-384= 0

( P 3 8 ) ( P 3 3 + 8 P 3 2 + 56 P 3 + 48 ) = 0 \Rightarrow (P_3-8)(P_3^3+8P_3^2+56P_3+48)= 0

P 3 = 8 P 2 = 1 + P 3 = 9 \Rightarrow P_3 = 8\quad \Rightarrow P_2 = 1 + P_3 = 9

P 1 = 1 P 3 2 4 = 1 8 2 4 = 15 \Rightarrow P_1 = 1-\dfrac {P_3^2}{4} = 1 - \dfrac {8^2}{4} = \boxed {-15}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...