What does the voltmeter read in the figure above?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
@Ahmed Salah -Hi! Could you please tell me what you meant by V(2-3,6,4)=.....?..I actually go the values of the current using Kirchoof's Laws...Please elcuidate...thnx! :)
I m e a n t h e V o f t h e g r o u p c o n s i s t i n g o f 2 Ω a n d 3 Ω , 6 Ω , 4 Ω = t h e V o f t h e b r a n c h c o n s i s t i n g o f 3 Ω , 6 Ω , 4 Ω a s t h e y a r e i n p a r a l l e l . e x c u s e m e f o r m y d e l a y ! !
Calculate equivalent resistance by using series and parallel method. consider resistance of voltmeter is infinite and find out coming current through 12 V battery which is 4 A, distribute in series resistance ((4,8,8),(3,6,4)) and you will get 3 A and 1 A respectively and now you get voltage across 4 ohm resistor is 4 V which is reading of voltmeter.
Problem Loading...
Note Loading...
Set Loading...
{ R }_{ 1 }^{ ` }=1.2Ω\\ { R }_{ 2 }^{ ` }={ (\cfrac { 1 }{ 4 } +\cfrac { 1 }{ 8 } +\cfrac { 1 }{ 8 } ) }^{ -1 }=2Ω\\ { R }_{ 3 }^{ ` }={ (\cfrac { 1 }{ 3 } +\frac { 1 }{ 6 } ) }^{ -1 }+\quad 4\quad =6Ω\\ { R }_{ 2 }^{ ` }\quad ,\quad { R }_{ 3 }^{ ` }\quad are\quad in\quad parallel\\ { R }_{ 1 }^{ ` }\quad is\quad respectively\quad \\ \boxed { Now,\quad you\quad yourself\quad should\quad draw\quad \\ the\quad circuit\quad to\quad complete.\\ -leave\quad the\quad voltmeter\quad as\quad it\quad is\quad in\quad \\ parallel\quad with\quad 4Ω-\\ use\quad your\quad mind\quad ,\quad and\quad draw\quad it\quad well } \\ Hence;\\ { R }_{ t }=\cfrac { { R }_{ 2 }^{ ` }\times { R }_{ 3 }^{ ` } }{ { R }_{ 2 }^{ ` }+{ R }_{ 3 }^{ ` } } +{ R }_{ 1 }^{ ` }\\ \quad \quad =\cfrac { 2\times 6 }{ 2+6 } +1.2=2.7Ω\\ { I }_{ t }=\cfrac { { V }_{ B } }{ { R }_{ t }+r } =\cfrac { 12 }{ 2.7+.3 } =4A\\ \\ { V }_{ (2-3,6,4) }={ V }_{ (3,6,4) }\\ { I }_{ t }\times 1.5=I\times 6\\ 4\times 1.5=I\times 6\\ { I }_{ (4) }=\cfrac { 4\times 1.5 }{ 6 } =1A\\ V={ I }_{ (4) }{ R }_{ (4) }\\ \quad =\quad 1\times 4=\boxed { 4V } \\