The Whimsical Cosine

Geometry Level 5

r = 1 10 sec 4 r θ = 88 + a cos 4 θ \sum_{r=1}^{10} \sec^{4r} \theta=88+\frac {a}{\cos^4 \theta}

Given cos 8 θ + cos 4 θ = 1. \cos^8 \theta+\cos^4 \theta=1. and that it satisfy the equation above for some constant a a . Find a a .


Note: This is one of my original problems. It belongs to the set- Questions I've Made © .


The answer is 143.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Sandeep Bhardwaj
Mar 23, 2015

BY ALGEBRAIC MANIPULATION :

r = 1 10 s e c 4 r θ = s e c 4 θ ( 1 s e c 40 θ ) ( 1 s e c 4 θ ) \displaystyle \sum_{r=1}^{10} sec^{4r}\theta= sec^4\theta \cdot \dfrac{(1-sec^{40}\theta)}{(1-sec^4\theta)} ---(1) Using G.M. sum formula

Given : c o s 8 θ + c o s 4 θ = 1 cos^8\theta +cos^4\theta=1

s e c 8 θ = 1 + s e c 4 θ \implies sec^8\theta=1+sec^4\theta

s e c 16 θ = ( s e c 8 θ ) 2 = ( 1 + s e c 4 θ ) 2 = 2 + 3 s e c 4 θ sec^{16}\theta=(sec^8\theta)^2=(1+sec^4\theta)^2=2+3sec^4\theta

s e c 32 θ = ( s e c 16 θ ) 2 = 13 + 21 s e c 4 θ sec^{32}\theta=(sec^{16}\theta)^2=13+21sec^4\theta

s e c 40 θ = s e c 32 θ s e c 8 θ = 34 + 55 s e c 4 θ sec^{40}\theta=sec^{32}\theta \cdot sec^8\theta=34+55sec^4\theta

Using above values in (1)

r = 1 10 s e c 4 r θ = s e c 4 θ ( 1 ( 34 + 55 s e c θ ) ) ( 1 s e c 4 θ ) \displaystyle \sum_{r=1}^{10} sec^{4r}\theta= sec^4\theta \cdot \dfrac{(1-(34+55sec^\theta))}{(1-sec^4\theta)}

= ( 33 55 s e c 4 θ ) s e c 4 θ 1 s e c 4 θ \quad =\dfrac{(-33-55sec^4\theta) \cdot sec^4\theta}{1-sec^4\theta}

= 55 88 s e c 4 θ 1 s e c 4 θ \quad =\dfrac{-55-88sec^4\theta}{1-sec^4\theta}

Adding and subtracting 88 in the numerator :

= 88 + 143 s e c 4 θ 1 \quad =88+\dfrac{143}{sec^4\theta-1}

= 88 + 143 c o s 4 θ \quad =88+\dfrac{143}{cos^4\theta}

So a = 143 \large \boxed{a=143}

enjoy !

Wow... that's cool. You figured it out Po.

Sanjeet Raria - 6 years, 2 months ago

Log in to reply

Thanks Poooo.. ¨ \ddot \smile

Sandeep Bhardwaj - 6 years, 2 months ago

What was your method @Ayush Verma ?

Sanjeet Raria - 6 years, 2 months ago
Chew-Seong Cheong
Mar 23, 2015

Given that cos 8 θ + cos 4 θ = 1 \cos^8 {\theta} + \cos^4 {\theta} = 1 . Dividing throughout by cos 8 θ \cos^8 {\theta} :

1 + sec 4 θ = s e c 8 θ sec 8 θ s e c 4 θ 1 = 0 φ 2 φ 1 = 0 \Rightarrow 1 + \sec^4 {\theta} = sec^8 {\theta} \quad \Rightarrow \sec^8 {\theta} - sec^4 {\theta} - 1 = 0 \quad \Rightarrow \varphi^2 - \varphi -1 = 0

sec 4 θ = φ = 1 + 5 2 = golden ratio \Rightarrow \sec^4 {\theta} = \varphi = \dfrac {1+\sqrt{5}}{2} = \text{golden ratio}

We note that:

\(\begin{array} {} \varphi &= \varphi & & = 0 + \varphi \\ \varphi^2 & = 1 + \varphi & & = 1 + \varphi \\ \varphi^3 & = \varphi + \varphi^2 & = \varphi + 1 + \varphi & = 1 + 2 \varphi \\ \varphi^4 & = \varphi + 2\varphi^2 & = \varphi + 2(1 + \varphi) & = 2 + 3 \varphi \\ \varphi^5 & = 2\varphi + 3\varphi^2 & = 2\varphi + 3(1 + \varphi) & = 3 + 5 \varphi \\ \varphi^6 & & & = 5 + 8\varphi \\ \varphi^7 & & & = 8 + 13 \varphi \\ \varphi^8 & & & = 13 + 21 \varphi \\ \varphi^9 & & & = 21 + 34 \varphi \\ \varphi^{10} & & & = 34 + 55 \varphi \end{array} \)

We note that: φ n = F n 1 + F n φ \varphi^n = F_{n-1} + F_n \varphi , where F n F_n is the n t h n^{th} Fibonacci number.

Therefore, r = 1 10 sec 4 r θ = r = 0 9 F r + sec 4 θ r = 1 10 F r = 88 + 143 cos 4 θ \displaystyle \sum_{r=1}^{10} {\sec^{4r}{\theta}} = \sum_{r=0}^{9} {F_r} + \sec^{4}{\theta} \sum_{r=1}^{10} {F_r} = 88 + \dfrac {143}{\cos^{4}{\theta}}

a = 143 \Rightarrow a = \boxed{143}

Did the same way!

Kartik Sharma - 6 years, 2 months ago
Sanjeet Raria
Mar 23, 2015

Golden Approach:

cos 8 θ + cos 4 θ = 1. \cos^8 \theta+\cos^4 \theta=1. Clearly cos θ 0. \cos \theta \ne 0. Now putting x = 1 cos 4 θ = sec 4 θ x=\frac{1}{\cos^4 \theta}=\sec^4 \theta we get, x 2 x 1 = 0 x^2-x-1=0 x = ϕ \Rightarrow x=\phi . Now r = 1 10 sec 4 r θ = n = 1 10 ϕ n \sum_{r=1}^{10} \sec^{4r} \theta=\sum_{n=1}^{10} \phi^n Using the equation ϕ n = F n ϕ + F n 1 \phi^n=F_n \phi+F_{n-1} where F n F_n is the nth number of the Fibonacci sequence 1 , 1 , 2 , 3 , 5 , 8... 1,1,2,3,5,8... we find that r = 1 10 sec 4 r θ = 143 sec 4 θ + 88 \sum_{r=1}^{10} \sec^{4r} \theta=143 \sec^4 \theta+88 a = 143 \Rightarrow a=\boxed{143}

Priyesh Pandey
Mar 29, 2015

golden ratio and its property that g+1=g^2 {g-golden ratio} here g-1=cos^4(theta)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...