The world largest known prime to the test!

If a n { a }_{ n } satisify

a n = a n 1 2 2 { a }_{ n }={ a }_{ n-1 }^{ 2 }-2

and if a 0 = 4 { a }_{ 0 }=4 , find

a 80 , 000 , 000 ( m o d 2 74 , 207 , 281 1 ) { a }_{ 80,000,000 } \pmod{{ 2 }^{ 74,207,281 }-1}

Hint: 2 74 , 207 , 281 1 { 2 }^{ 74,207,281 }-1 is a Mersenne prime .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Joel Yip
Apr 6, 2016

With the Lucas–Lehmer primality test ,

a 74 , 207 , 279 ( m o d 2 74 , 207 , 281 1 ) = 0 { a }_{ 74,207,279 }\left( mod\quad { 2 }^{ 74,207,281 }-1 \right) =0

a 74 , 207 , 280 ( m o d 2 74 , 207 , 281 1 ) = 0 2 2 ( m o d 2 74 , 207 , 281 1 ) = 2 ( m o d 2 74 , 207 , 281 1 ) { a }_{ 74,207,280 }\left( mod\quad { 2 }^{ 74,207,281 }-1 \right) ={ 0 }^{ 2 }-2\left( mod\quad { 2 }^{ 74,207,281 }-1 \right) \\ =-2\left( mod\quad { 2 }^{ 74,207,281 }-1 \right)

a 74 , 207 , 281 ( m o d 2 74 , 207 , 281 1 ) = ( 2 ) 2 2 ( m o d 2 74 , 207 , 281 1 ) = 2 ( m o d 2 74 , 207 , 281 1 ) { a }_{ 74,207,281 }\left( mod\quad { 2 }^{ 74,207,281 }-1 \right) ={ \left( -2 \right) }^{ 2 }-2\left( mod\quad { 2 }^{ 74,207,281 }-1 \right) \\ =2\left( mod\quad { 2 }^{ 74,207,281 }-1 \right)

a 74 , 207 , 282 ( m o d 2 74 , 207 , 281 1 ) = 2 2 2 ( m o d 2 74 , 207 , 281 1 ) = 2 ( m o d 2 74 , 207 , 281 1 ) { a }_{ 74,207,282 }\left( mod\quad { 2 }^{ 74,207,281 }-1 \right) ={ 2 }^{ 2 }-2\left( mod\quad { 2 }^{ 74,207,281 }-1 \right) \\ =2\left( mod\quad { 2 }^{ 74,207,281 }-1 \right)

Now we realise that we will keep getting 2 2 .

So, the answer is 2 2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...