The x th x^\text{th} root of x x

Let f : Q + R + f: \mathbb Q^+ \to \mathbb R^+ , we define f ( x ) = x x f(x) = \sqrt[x]{x} .

Let x x and y y be positive rational numbers such that x < y x<y and f ( x ) = f ( y ) f(x) = f(y) . Find the sum of all possible values of x x .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

K. J. W.
Sep 8, 2016

L e t x = p q a n d y = r s , w h e r e p , q a r e c o p r i m e p o s i t i v e i n t e g e r s , a n d s i m i l a r i l y f o r r a n d s . N o w p q p q = r s r s p q q p = r s s r . T a k i n g l o g a r i t h m s w . r . t . p q o n b o t h s i d e s w e g e t q p = s r log p q r s . I t f o l l o w s t h a t log p q r s m u s t b e a r a t i o n a l n u m b e r , i . e . p q i s a r a t i o n a l p o w e r o f r s . L e t p = r n , w h e r e n i s a r a t i o n a l n u m b e r n o t e q u a l t o 1 ( s i n c e x y ) . T h e n r n s n r n = r s r ( a s r a n d s a r e c o p r i m e ) . S i m p l i f y i n g w e o b t a i n n = ( r s ) n 1 . T h e r e f o r e n n 1 i s r a t i o n a l . L e t t i n g n = t u , w h e r e t , u a r e c o p r i m e i n t e g e r s w e s e e t h a t t a n d u m u s t b o t h b e r a t i o n a l n u m b e r s r a i s e d t o t h e p o w e r s o f t u . T h e o n l y s o l u t i o n f o r t h i s i s t = 2 a n d u = 1 ( o r v i c e v e r s a b u t t h i s i s i m p o s s i b l e a s x < y ) . H e n c e x = 2 a n d y = 4 i s t h e o n l y s o l u t i o n . S o t h e a n s w e r i s 2 . Let\quad x=\frac { p }{ q } \quad and\quad y=\frac { r }{ s } ,\quad where\quad p,q\quad are\quad coprime\quad positive\quad integers,\quad and\quad similarily\\ for\quad r\quad and\quad s.\\ Now\quad \sqrt [ \frac { p }{ q } ]{ \frac { p }{ q } } =\sqrt [ \frac { r }{ s } ]{ \frac { r }{ s } } \Rightarrow { \frac { p }{ q } }^{ \frac { q }{ p } }={ \frac { r }{ s } }^{ \frac { s }{ r } }.\\ Taking\quad logarithms\quad w.r.t.\quad \frac { p }{ q } \quad on\quad both\quad sides\quad we\quad get\\ \frac { q }{ p } =\frac { s }{ r } \log _{ \frac { p }{ q } }{ \frac { r }{ s } } .\\ It\quad follows\quad that\quad \log _{ \frac { p }{ q } }{ \frac { r }{ s } } \quad must\quad be\quad a\quad rational\quad number,\quad i.e.\quad \frac { p }{ q } \\ is\quad a\quad rational\quad power\quad of\quad \frac { r }{ s } .\\ Let\quad p={ r }^{ n },\quad where\quad n\quad is\quad a\quad rational\quad number\quad not\quad equal\quad to\quad 1\quad (since\quad x\neq y).\quad \\ Then\quad { r }^{ \frac { n{ s }^{ n } }{ { r }^{ n } } }={ \quad r }^{ \frac { s }{ r } }(as\quad r\quad and\quad s\quad are\quad coprime).\\ Simplifying\quad we\quad obtain\quad n={ (\frac { r }{ s } ) }^{ n-1 }.\quad Therefore\quad \sqrt [ n-1 ]{ n } \quad is\quad rational.\quad \\ Letting\quad n=\frac { t }{ u } ,\quad where\quad t,\quad u\quad are\quad coprime\quad integers\quad we\quad see\quad that\quad t\quad and\quad u\quad \\ must\quad both\quad be\quad rational\quad numbers\quad raised\quad to\quad the\quad powers\quad of\quad t-u.\quad \\ The\quad only\quad solution\quad for\quad this\quad is\quad t=2\quad and\quad u=1\quad (or\quad vice\quad versa\quad but\quad this\quad is\quad impossible\quad as\quad x<y).\quad \\ Hence\quad x=2\quad and\quad y=4\quad is\quad the\quad only\quad solution.\quad So\quad the\quad answer\quad is\quad \boxed { 2 } .

What about x=9/4, y=27/8? I follow everything in your solution except the penultimate step. Why must t=2 and u=1? I can see why we need t=u+1, but given that, it seems to me any value of u will do.

Joe Mansley - 2 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...