The year end of

Algebra Level 3

If x = 1 + 2 3 x=1+\sqrt[3]{2} Find A= x 5 2 x 4 + x 3 3 x 2 + 1942 x^5-2x^4+x^3-3x^2+1942


The answer is 1945.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Son Nguyen
Oct 20, 2015

If A= x 5 2 x 4 + x 3 3 x 2 + 1942 x^5-2x^4+x^3-3x^2+1942 Let A B \frac{A}{B} B= x 3 3 x 2 + 3 x 3 x^3-3x^2+3x-3 ======>A= x 5 2 x 4 + x 3 3 x 2 + 1942 x^5-2x^4+x^3-3x^2+1942 = ( x 3 3 x 2 + 3 x 3 ) ( x 2 + x + 1 ) + 1945 (x^3-3x^2+3x-3)(x^2+x+1)+1945 =====>A=1945

Here's the answer .We've got x 5 2 x 4 + x 3 3 x 2 + 1942 x^5-2x^4+x^3-3x^2+1942 = x 2 ( x 3 3 x 2 + 3 x 3 ) + x 4 2 x 3 + 1942 ( 1 ) =x^2(x^3-3x^2+3x-3)+x^4-2x^3+1942(1)

*From the condition we have x 3 3 x 2 + 3 x 3 = 0 ( 2 ) x^3-3x^2+3x-3=0 (2) x 2 2 x = ( 2 3 ) 2 1 ( 3 ) x^2-2x=(\sqrt[3]{2})^2-1(3) x 2 = ( 2 3 + 1 ) 2 ( 4 ) x^2=(\sqrt[3]{2}+1)^2 (4) Replace (2) to (1) we get x 4 2 x 3 + 1942 x^4-2x^3+1942 = x 2 ( x 2 2 x ) + 1942 ( 5 ) =x^2(x^2-2x) +1942 (5) Replace (3) and (4) to (5) we get ( 2 3 + 1 ) 2 [ ( 2 3 ) 2 1 ) ] + 1942 ( 6 ) (\sqrt[3]{2}+1)^2[(\sqrt[3]{2})^2-1)]+1942 (6) Solving (6) and we get the answer 1945 1945

P C - 5 years, 7 months ago

Log in to reply

pls onl facebook and see my answer

Son Nguyen - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...