Theater Seating

Algebra Level 1

Hi! If you happen to open and read this problem, you are obliged to answer this question.

An architect designs a theater with 15 seats in the first row, 18 in the second, 21 in the third, and so on. If the theater is to have a seating capacity of 870, how many rows must the architect use in his design?

15 25 20 30

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Justin Tuazon
Dec 8, 2014

T h e n u m b e r o f s e a t s i s i n t h e s e q u e n c e 15 , 18 , 21 , . . . I n t h e s e q u e n c e t h e 1 s t t e r m o r a 1 i s e q u a l t o 15. T h e c o m m o n d i f f e r e n c e o r d i s e q u a l t o 3. T h e n u m b e r o f s e a t s m u s t b e 870 , w h i c h m e a n s t h e s u m o f t h e s e q u e n c e u p t o t h e n t h t e r m m u s t b e 870. W e w i l l u s e t h e f o r m u l a S n = n [ 2 a 1 + ( n 1 ) d ] 2 W h e r e S n i s t h e s u m o f t h e s e a t s a n d n i s t h e n u m b e r o f r o w s . a 1 = 15 d = 3 S n = n ( 30 + 3 n 3 ) 2 = 870 3 n 2 + 27 n 1740 = 0 n 2 + 9 n 580 = 0 ( n 20 ) ( n + 29 ) = 0 n = 20 ( n > 0 ) T h e a r c h i t e c t m u s t u s e 20 r o w s i n h i s d e s i g n . The\quad number\quad of\quad seats\quad is\quad in\quad the\quad sequence\\ 15,\quad 18,\quad 21,\quad ...\\ \\ In\quad the\quad sequence\quad the\quad 1st\quad term\quad or\quad { a }_{ 1 }\quad is\quad equal\quad to\quad 15.\\ The\quad common\quad difference\quad or\quad d\quad is\quad equal\quad to\quad 3.\\ \\ The\quad number\quad of\quad seats\quad must\quad be\quad 870,\quad which\quad means\\ the\quad sum\quad of\quad the\quad sequence\quad up\quad to\quad the\quad nth\quad term\\ must\quad be\quad 870.\\ \\ We\quad will\quad use\quad the\quad formula\\ \qquad { S }_{ n }=\frac { n[2{ a }_{ 1 }+(n-1)d] }{ 2 } \\ Where\quad { S }_{ n }\quad is\quad the\quad sum\quad of\quad the\quad seats\\ and\quad n\quad is\quad the\quad number\quad of\quad rows.\\ \\ { a }_{ 1 }=15\\ d=3\\ \\ { S }_{ n }=\frac { n(30+3n-3) }{ 2 } =870\\ \\ \qquad \qquad 3{ n }^{ 2 }+27n-1740=0\\ \qquad \qquad { n }^{ 2 }+9n-580=0\\ \qquad \qquad (n-20)(n+29)=0\\ \qquad \qquad n=20\quad (n>0)\\ \\ \boxed { \therefore \quad The\quad architect\quad must\quad use\quad 20\quad rows\quad in\quad his\quad design. } \\ \\

Bk Lim
Dec 18, 2014

n = number of rows

5+6+7+8+...+(n+4) = 290

Solve: n=20

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...