Theory of Equations

Algebra Level 2

1 2 3 4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Naren Bhandari
Oct 15, 2017

x 2 + 4 ( x x 2 ) 2 45 = 0 x 2 + ( 2 x x 2 ) 2 45 = 0 ( x + 2 x x 2 ) 2 2. ( 2 x ) ( x x 2 ) 45 = 0 ( x 2 x 2 ) 2 4 ( x 2 x 2 ) 45 = 0 ( x 2 x 2 ) 2 9 ( x 2 x 2 ) + 5 ( x 2 x 2 ) 45 = 0 x 2 x 2 ( x 2 x 2 9 ) + 5 ( x 2 x 2 9 ) = 0 ( x 2 x 2 9 ) ( x 2 x 2 + 5 ) = 0 \begin{aligned} & x^2 +4\left(\frac{x}{x-2}\right)^2 -45 = 0 \\ & x^2+\left(\frac{2x}{x-2}\right)^2 -45 = 0 \\ & \left(x+\frac{2x}{x-2}\right)^2 - 2.(2x)\left(\frac{x}{x-2}\right) -45 = 0 \\ & \left(\frac{x^2}{x-2}\right)^2 -4\left(\frac{x^2}{x-2}\right) -45 = 0 \\& \left(\frac{x^2}{x-2}\right)^2 - 9\left(\frac{x^2}{x-2}\right) +5\left(\frac{x^2}{x-2}\right) -45 = 0 \\ & \frac{x^2}{x-2}\left(\frac{x^2}{x-2} -9\right) + 5\left(\frac{x^2}{x-2} -9\right) = 0 \\ & \left(\frac{x^2}{x-2}-9\right)\left(\frac{x^2}{x-2}+5\right) = 0 \end{aligned}

Either ( x 2 x 2 9 ) = 0 x 2 9 x + 18 = 0 ( x 3 ) ( x 6 ) = 0 x = 6 or x = 3 (restricted) \begin{aligned} & \left(\frac{x^2}{x-2}-9\right) = 0 \\ & \Rightarrow x^2-9x +18 = 0 \implies (x-3)(x-6)=0 \\ & x = 6\space \text{or} x = 3 \space \text{(restricted)} \end{aligned}

0r ( x 2 x 2 + 5 ) = 0 x 2 + 5 x 10 = 0 x = 5 ± 45 2 x = 45 5 2 0.85410.. x = 45 5 2 5.85410.. \begin{aligned} & \left(\frac{x^2}{x-2}+5\right) = 0 \\ & \Rightarrow x^2 +5x-10= 0 \\ & \implies x = \frac{-5±\sqrt {45}}{2} \\ & \implies x = \frac{\sqrt{45}-5}{2} \approx 0.85410..\\ & \implies x= \frac{-\sqrt{45} -5}{2} \approx - 5.85410..\end{aligned} .

Thus we have x = 6 , 0.58410... , 5.85410 x = 6, 0.58410... ,-5.85410 Taking x = 6 x=6 and substituting in ( x 2 ) 2 ( x + 3 ) 2 x 3 = 16 × 9 9 16 \frac{(x-2)^2(x+3)}{2x-3} = \frac{16\times9}{9} \Rightarrow \boxed{16}

there is a typo in the 3rd line of your solution , another 2 is missing ......

sanyam goel - 3 years, 7 months ago

Log in to reply

Thanks ! I have edited.

Naren Bhandari - 3 years, 7 months ago
Aakhyat Singh
Oct 14, 2017

@Naren Bhandari , @Beatriz Sampaio how do u solve this question? Could u pls post the solution

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...