There Are Spheres Everywhere.

Level pending

In the regular tetrahedron above, extend the diagram to an infinite number of inscribed spheres. Along each radii O A , O B , O C OA, OB,OC and O P OP of the circumscribed sphere the inscribed stacked spheres are tangent to each other.

Let V T V_{T} be the sum of all the spheres.

if V T = 6 π V_{T} = \sqrt{6}\pi and the length a a of a edge of the above regular tetrahedron can be expressed as a = α β λ 3 a = \alpha\sqrt[3]{\dfrac{\beta}{\lambda}} , where α , β \alpha,\beta and λ \lambda are coprime positive integers, find α + β + λ \alpha + \beta + \lambda .


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 20, 2019

Using the above diagram a 2 3 R 1 = 2 3 x x = 2 2 R 1 \implies \dfrac{\dfrac{a}{2\sqrt{3}}}{R_{1}} = \dfrac{\sqrt{\dfrac{2}{3}}}{x} \implies x = 2\sqrt{2}R_{1}

Right C O P 9 R 1 2 = 2 3 a 2 2 2 3 a R 1 + R 1 2 \triangle{COP} \implies 9R_{1}^2 = \dfrac{2}{3}a^2 - 2\sqrt{\dfrac{2}{3}}aR_{1} + R_{1}^2 \implies

4 R 1 2 + 2 3 a R 1 1 3 a 2 = 0 4R_{1}^2 + \sqrt{\dfrac{2}{3}}aR_{1} - \dfrac{1}{3}a^2 = 0 \implies R 1 = a 2 6 R_{1} = \dfrac{a}{2\sqrt{6}} dropping the negative root.

H 1 = 2 3 H_{1} = \dfrac{2}{\sqrt{3}} and R 1 = a 2 6 H 2 = H 1 2 R 1 = a 6 R_{1} = \dfrac{a}{2\sqrt{6}} \implies H_{2} = H_{1} - 2R_{1} = \dfrac{a}{\sqrt{6}} and H 2 H 1 = 2 \dfrac{H_{2}}{H_{1}} = 2 \implies

H 2 = 1 2 H 1 R 2 = 1 2 R 1 R 3 = 1 2 R 2 = 1 2 2 R 1 H_{2} = \dfrac{1}{2}H_{1} \implies R_{2} = \dfrac{1}{2}R_{1} \implies R_{3} = \dfrac{1}{2}R_{2} = \dfrac{1}{2^2}R_{1} and in general

R n = ( 1 2 ) n 1 R 1 R_{n} = (\dfrac{1}{2})^{n - 1}R_{1}

Note here that 2 R 1 n = 1 R n = 4 R 1 = 4 ( 1 2 6 ) = 2 3 = H 1 2R_{1}\sum_{n = 1}^{\infty} R_{n} = 4R_{1} = 4(\dfrac{1}{2\sqrt{6}}) = \sqrt{\dfrac{2}{3}} = H_{1} .

R n = ( 1 2 ) n 1 R 1 V n = 4 3 π ( 1 8 ) n 1 R 1 3 R_{n} = (\dfrac{1}{2})^{n - 1}R_{1} \implies V_{n} = \dfrac{4}{3}\pi (\dfrac{1}{8})^{n - 1} R_{1}^3

V v = 4 3 π R 1 3 ( n = 1 ( 1 8 ) n 1 ) = \implies V_{v} = \dfrac{4}{3}\pi R_{1}^3(\sum_{n = 1}^{\infty} (\dfrac{1}{8})^{n - 1}) = 4 3 π R 1 3 ( 8 7 ) = \dfrac{4}{3}\pi R_{1}^3(\dfrac{8}{7}) =

4 3 π ( a 2 6 ) 3 ( 8 7 ) = 4 3 π ( a 3 8 6 6 ) ( 8 7 ) = 2 π a 3 63 6 \dfrac{4}{3}\pi (\dfrac{a}{2\sqrt{6}})^3 (\dfrac{8}{7}) = \dfrac{4}{3}\pi (\dfrac{a^3}{8 * 6\sqrt{6}})(\dfrac{8}{7}) = \dfrac{2\pi a^3}{63\sqrt{6}} .

For the other three stacks let V d = V v V 1 = π a 3 ( 2 63 6 4 3 ( 1 2 6 ) 3 ) V_{d} = V_{v} - V_{1} = \pi a^3(\dfrac{2}{63\sqrt{6}} - \dfrac{4}{3}(\dfrac{1}{2\sqrt{6}})^3)

= π a 3 6 ( 2 63 1 36 ) = π a 3 252 6 = \dfrac{\pi a^3}{\sqrt{6}}(\dfrac{2}{63} - \dfrac{1}{36}) = \dfrac{\pi a^3}{252\sqrt{6}} \implies

3 V d = π a 3 84 6 V T = V v + 3 V d = π a 3 6 ( 2 63 + 1 84 ) = 11 π a 3 252 6 = 6 π 3V_{d} = \dfrac{\pi a^3}{84\sqrt{6}} \implies V_{T} = V_{v} + 3V_{d} = \dfrac{\pi a^3}{\sqrt{6}}(\dfrac{2}{63} + \dfrac{1}{84}) = \dfrac{11\pi a^3}{252\sqrt{6}} = \sqrt{6}\pi \implies

a = 6 252 11 = 3 3 2 3 7 11 a = 6 7 11 3 = α β λ 3 α + β + λ = 24 a = \dfrac{6 * 252}{11} = \dfrac{3^3 * 2^3 * 7}{11} \implies a = 6\sqrt[3]{\dfrac{7}{11}} = \alpha\sqrt[3]{\dfrac{\beta}{\lambda}} \implies \alpha + \beta + \lambda = \boxed{24}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...