There is an easier way.

Calculus Level 3

If f ( x ) = a log 1 + x 1 x + b x 3 + c sin x + 5 \displaystyle{ f(x) = a \log{\frac{1+x}{1-x}} +bx^3 + c \sin x +5} and f ( l o g 3 2 ) f(log_{3} 2) =4, then find the value of f ( l o g 3 1 2 ) f(log_{3} \frac{1}{2})


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Abhishek Sharma
May 15, 2015

We have,

f ( x ) = a log 1 + x 1 x + b x 3 + c sin x + 5 \displaystyle{ f(x) = a \log{\frac{1+x}{1-x}} +bx^3 + c \sin x +5}

Taking 5 5 to the Left hand side,

f ( x ) 5 = a log 1 + x 1 x + b x 3 + c sin x \displaystyle{ f(x) - 5= a \log{\frac{1+x}{1-x}} +bx^3 + c \sin x }

Let this be Statement 1.

Now putting x = x x=-x in the original equation,

f ( x ) = a log 1 x 1 + x b x 3 c sin x + 5 \displaystyle{ f(-x) = a \log{\frac{1-x}{1+x}} -bx^3 - c \sin x +5}

Also,

f ( x ) = a log 1 + x 1 x b x 3 c sin x + 5 \displaystyle{ f(-x) = -a \log{\frac{1+x}{1-x}} -bx^3 - c \sin x +5}

Using Statement 1,

f ( x ) = 5 f ( x ) + 5 \displaystyle{ f(-x) = 5 - f(x)+5}

Further simplifying,

f ( x ) = 10 f ( x ) \displaystyle{ f(-x) = 10 - f(x)}

Now putting x = log 3 2 x=\log _{ 3 }{ 2 } we get f ( log 3 1 2 ) = 6 \boxed{f(\log _{ 3 }{ \frac{1}{2} })=6}

Alternative Solution

Let g ( x ) = f ( x ) 5 g(x)=f(x)-5 .

Observe that g ( x ) g(x) is an odd function.

Therefore g ( x ) = g ( x ) g(-x)=-g(x) .

f ( x ) 5 = 5 f ( x ) f(-x)-5=5-f(x) f ( x ) = 10 f ( x ) f(-x)=10-f(x)

Done the same way.

Chew-Seong Cheong - 6 years ago

Nice problem! Love it!

Noel Lo - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...