There is No Backward

Algebra Level 3

k = 1 k 5 k = ? \large \sum_{k = 1}^\infty \frac{k}{5^k} =\, ?


The answer is 0.3125.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Nibedan Mukherjee
Jul 30, 2016

Chew-Seong Cheong
Jul 30, 2016

S = k = 1 k 5 k = 1 5 k = 1 k 5 k 1 = 1 5 k = 1 x k x Let x = 1 5 = 1 5 × x k = 1 x k = 1 5 × x ( x 1 x ) = 1 5 ( 1 1 x + x ( 1 x ) 2 ) = 1 5 × 1 ( 1 x ) 2 Putting back x = 1 5 = 5 16 = 0.3125 \begin{aligned} S & = \sum_{k=1}^\infty \frac k{5^k} \\ & = \frac 15 \sum_{k=1}^\infty \frac k{5^{k-1}} \\ & = \frac 15 \sum_{k=1}^\infty \frac {\partial \color{#3D99F6}{x}^k}{\partial \color{#3D99F6}{x}} & \small \color{#3D99F6}{\text{Let }x = \frac 15} \\ & = \frac 15 \times \frac {\partial}{\partial x} \sum_{k=1}^\infty x^k \\ & = \frac 15 \times \frac {\partial}{\partial x} \left(\frac x{1-x} \right) \\ & = \frac 15 \left( \frac 1{1-x} + \frac x{(1-x)^2} \right) \\ & = \frac 15 \times \frac 1{(1-x)^2} & \small \color{#3D99F6}{\text{Putting back }x = \frac 15} \\ & = \frac 5{16} = \boxed{0.3125} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...