Gravitational Mechanics!

Consider a hypothetical planet of mass M M and radius R R in deep space such that there is no interaction of any other celestial body on any object nearby it. Now imagine, an object of mass m m taken up to the height of 2 R 2R from the planet's center and then released. Find the time taken by it to hit the surface.

If the time taken can be expressed as: t = R a b ( π c + d ) e G M \large t = \frac{R^{\frac{a}{b}}(\pi^{c} +d )}{e\sqrt{GM}} where a a , b b , c c , d d , and e e are positive integers, find the value of a + b + c + d + e a+b+c+d+e .

Details And Assumptions

  • Assume the planet has no atmosphere.
  • The object is not given any initial energy, except the potential energy it gains.


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rui-Xian Siew
Nov 3, 2017

By the law of conservation of energy, the gain of kinetic energy equals to the difference of potential energy. Thus,

1 2 m v 2 = G M m r G M m 2 R v = G M R ( 2 R r 1 ) \frac { 1 }{ 2 } m{ v }^{ 2 }=\frac { GMm }{ r } -\frac { GMm }{ 2R } \\ \therefore v=-\sqrt { \frac { GM }{ R } (\frac { 2R }{ r } -1) }

Let u = 2 R r 1 u=\sqrt { \frac { 2R }{ r } -1 }

d u d r = R u r 2 = ( u 2 + 1 ) 2 4 R u v = d r d t = d r d u d u d t = 4 R u ( u 2 + 1 ) 2 d u d t d u ( u 2 + 1 ) 2 = G M R 3 2 4 d t \Rightarrow \frac { du }{ dr } =\frac { -R }{ u{ r }^{ 2 } } =\frac { -{ ({ u }^{ 2 }+1) }^{ 2 } }{ 4Ru } \\ \Rightarrow v=\frac { dr }{ dt } =\frac { dr }{ du } \frac { du }{ dt } =\frac { -4Ru }{ { ({ u }^{ 2 }+1) }^{ 2 } } \frac { du }{ dt } \\ \Rightarrow \frac { du }{ { ({ u }^{ 2 }+1) }^{ 2 } } =\frac { \sqrt { GM } { R }^{ -\frac { 3 }{ 2 } } }{ 4 } dt

Since u = 0 u=0 when r = 2 R r=2R , and u = 1 u=1 when r = R r=R , hence

0 1 d u ( u 2 + 1 ) 2 = 0 t G M R 3 2 4 d t G M R 3 2 4 t = 0 1 d u ( u 2 + 1 ) 2 \int _{ 0 }^{ 1 }{ \frac { du }{ { ({ u }^{ 2 }+1) }^{ 2 } } } =\int _{ 0 }^{ t }{ \frac { \sqrt { GM } { R }^{ -\frac { 3 }{ 2 } } }{ 4 } dt } \\ \Rightarrow \frac { \sqrt { GM } { R }^{ -\frac { 3 }{ 2 } } }{ 4 } t=\int _{ 0 }^{ 1 }{ \frac { du }{ { ({ u }^{ 2 }+1) }^{ 2 } } } 0 1 d u ( u 2 + 1 ) 2 = 0 1 d u ( u 2 + 1 ) 0 1 u 2 ( u 2 + 1 ) 2 d u = π 4 + u 2 ( u 2 + 1 ) u = 0 u = 1 1 2 0 1 d u u 2 + 1 = π 4 + 1 4 π 8 = π + 2 8 \int _{ 0 }^{ 1 }{ \frac { du }{ { ({ u }^{ 2 }+1) }^{ 2 } } } =\int _{ 0 }^{ 1 }{ \frac { du }{ { ({ u }^{ 2 }+1) } } } -\int _{ 0 }^{ 1 }{ \frac { { u }^{ 2 } }{ { ({ u }^{ 2 }+1) }^{ 2 } } du } \\ =\frac { \pi }{ 4 } +\frac { u }{ 2({ u }^{ 2 }+1) } _{ u=0 }^{ u=1 }-\frac { 1 }{ 2 } \int _{ 0 }^{ 1 }{ \frac { du }{ { { u }^{ 2 }+1 } } } \\ =\frac { \pi }{ 4 } +\frac { 1 }{ 4 } -\frac { \pi }{ 8 } \\ =\frac { \pi +2 }{ 8 }

t = ( π + 2 ) R 3 2 2 G M a + b + c + d + e = 3 + 2 + 1 + 2 + 2 = 10 \therefore \quad t=\frac { (\pi +2){ R }^{ \frac { 3 }{ 2 } } }{ 2\sqrt { GM } } \\ \therefore \quad a+b+c+d+e=3+2+1+2+2=\boxed { 10 }

Nice solution !(+1)

Rishu Jaar - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...